|
|
|
|
LEADER |
10724cam a2200349Ma 4500 |
001 |
ocm49569697 |
003 |
OCoLC |
005 |
20220203140247.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
011128s2002 njuad ob 001 0 eng d |
999 |
|
|
|c 138093
|d 138093
|
020 |
|
|
|a 0585387990
|q (electronic bk.)
|
020 |
|
|
|a 9780585387994
|q (electronic bk.)
|
020 |
|
|
|a 9781410604491
|
020 |
|
|
|a 1410604497
|
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCQ
|d YDXCP
|d OCLCQ
|d TUU
|d OCLCQ
|d TNF
|d OCLCQ
|d ZCU
|d OCLCO
|d OCLCF
|d OCLCQ
|d MWM
|d SUR
|d Z5A
|d TYFRS
|d OCLCQ
|d SAV
|d QT7
|d LUE
|
082 |
0 |
4 |
|a 519.5/35/0243
|2 21
|
100 |
1 |
|
|a Stevens, James
|9 87274
|e συγγραφέας.
|
245 |
1 |
0 |
|a Applied multivariate statistics for the social sciences /
|c James Stevens.
|
250 |
|
|
|a 4η έκδ.
|
260 |
|
|
|a Mahwah, N.J. :
|b L. Erlbaum,
|c 2002.
|
300 |
|
|
|a 1 ηλεκτρονική πηγή (xiv, 699 σ.) :
|b εικ., διαγρ.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|g 1.2
|t Type I Error, Type II Error, and Power
|g 3 --
|g 1.3
|t Multiple Statistical Tests and the Probability of Spurious Results
|g 6 --
|g 1.4
|t Statistical Significance Versus Practical Significance
|g 9 --
|g 1.5
|t Outliers
|g 12 --
|g 1.6
|t Research Examples for Some Analyses Considered in This Text
|g 17 --
|g 1.7
|t SAS and SPSS Statistical Packages
|g 24 --
|g 1.8
|t SPSS for Windows -- Releases 9.0 and 10.0
|g 34 --
|g 1.9
|t Data Files
|g 36 --
|g 1.10
|t Data Editing
|g 40 --
|g 1.11
|t SPSS Output Navigator
|g 45 --
|g 1.12
|t Some Issues Unique to Multivariate Analysis
|g 48 --
|g 1.13
|t Data Collection and Integrity
|g 49 --
|g Appendix 1
|t Defining a Measure of Statistical Distance
|g 50 --
|g Appendix 2
|t Milk Data
|g 52 --
|g Chapter 2
|t Matrix Algebra --
|g 2.2
|t Addition, Subtraction, and Multiplication of a Matrix by a Scalar
|g 59 --
|g 2.3
|t Obtaining the Matrix of Variances and Covariances
|g 62 --
|g 2.4
|t Determinant of a Matrix
|g 64 --
|g 2.5
|t Inverse of a Matrix
|g 70 --
|g 2.6
|t Eigenvalues
|g 73 --
|g 2.7
|t SPSS Matrix Procedure
|g 75 --
|g 2.8
|t SAS IML Procedure
|g 76 --
|g Chapter 3
|t Multiple Regression --
|g 3.2
|t Simple Regression
|g 82 --
|g 3.3
|t Multiple Regression for Two Predictors -- Matrix Formulation
|g 86 --
|g 3.4
|t Mathematical Maximization Nature of Least Squares Regression
|g 88 --
|g 3.5
|t Breakdown of Sum of Squares in Regression and F Test for Multiple Correlation
|g 89 --
|g 3.6
|t Relationship of Simple Correlations to Multiple Correlation
|g 91 --
|g 3.7
|t Multicollinearity
|g 91 --
|g 3.8
|t Model Selection
|g 93 --
|g 3.9
|t Two Computer Examples
|g 98 --
|g 3.10
|t Checking Assumptions for the Regression Model
|g 110 --
|g 3.11
|t Model Validation
|g 113 --
|g 3.12
|t Importance of the Order of the Predictors in Regression Analysis
|g 119 --
|g 3.13
|t Other Important Issues
|g 121 --
|g 3.14
|t Outliers and Influential Data Points
|g 125 --
|g 3.15
|t Further Discussion of the Two Computer Examples
|g 138 --
|g 3.16
|t Sample Size Determination for a Reliable Prediction Equation
|g 143 --
|g 3.17
|t Logistic Regression
|g 146 --
|g 3.18
|t Other Types of Regression Analysis
|g 155 --
|g 3.19
|t Multivariate Regression
|g 155 --
|g 3.20
|t Summary of Important Points
|g 159 --
|g Chapter 4
|t Two-Group Multivariate Analysis Of Variance --
|g 4.2
|t Four Statistical Reasons for Preferring a Multivariate Analysis
|g 174 --
|g 4.3
|t Multivariate Test Statistic as a Generalization of Univariate t
|g 175 --
|g 4.4
|t Numerical Calculations for a Two-Group Problem
|g 177 --
|g 4.5
|t Three Post Hoc Procedures
|g 181 --
|g 4.6
|t SAS and SPSS Control Lines for Sample Problem and Selected Printout
|g 183 --
|g 4.7
|t Multivariate Significance but No Univariate Significance
|g 184 --
|g 4.8
|t Multivariate Regression Analysis for the Sample Problem
|g 188 --
|g 4.9
|t Power Analysis
|g 192 --
|g 4.10
|t Ways of Improving Power
|g 195 --
|g 4.11
|t Power Estimation on SPSS MANOVA
|g 197 --
|g 4.12
|t Multivariate Estimation of Power
|g 197 --
|g Chapter 5
|t K-Group Manova: A Priori And Post Hoc Procedures --
|g 5.2
|t Multivariate Regression Analysis for a Sample Problem
|g 209 --
|g 5.3
|t Traditional Multivariate Analysis of Variance
|g 210 --
|g 5.4
|t Multivariate Analysis of Variance for Sample Data
|g 212 --
|g 5.5
|t Post Hoc Procedures
|g 217 --
|g 5.6
|t Tukey Procedure
|g 222 --
|g 5.7
|t Planned Comparisons
|g 225 --
|g 5.8
|t Test Statistics for Planned Comparisons
|g 228 --
|g 5.9
|t Multivariate Planned Comparisons on SPSS MANOVA
|g 231 --
|g 5.10
|t Correlated Contrasts
|g 235 --
|g 5.11
|t Studies Using Multivariate Planned Comparisons
|g 241 --
|g 5.12
|t Stepdown Analysis
|g 243 --
|g 5.13
|t Other Multivariate Test Statistics
|g 243 --
|g 5.14
|t How Many Dependent Variables for a MANOVA?
|g 245 --
|g 5.15
|t Power Analysis -- A Priori Determination of Sample Size
|g 245 --
|g Appendix
|t Novince (1977) Data for Multivariate Analysis of Variance Presented in Tables 5.3 and 5.4
|g 249 --
|g Chapter 6
|t Assumptions In Manova --
|g 6.2
|t ANOVA and MANOVA Assumptions
|g 257 --
|g 6.3
|t Independence Assumption
|g 258 --
|g 6.4
|t What Should Be Done With Correlated Observations?
|g 260 --
|g 6.5
|t Normality Assumption
|g 261 --
|g 6.6
|t Multivariate Normality
|g 262 --
|g 6.7
|t Assessing Univariate Normality
|g 263 --
|g 6.8
|t Homogeneity of Variance Assumption
|g 268 --
|g 6.9d
|t Homogeneity of the Covariance Matrices
|g 269 --
|g 6.10
|t General Procedure for Assessing Violations in MANOVA
|g 276 --
|g Appendix
|t Multivariate Test Statistics for Unequal Covariance Matrices
|g 279 --
|g Chapter 7
|t Discriminant Analysis --
|g 7.2
|t Descriptive Discriminant Analysis
|g 286 --
|g 7.3
|t Significance Tests
|g 287 --
|g 7.4
|t Interpreting the Discriminant Functions
|g 288 --
|g 7.5
|t Graphing the Groups in the Discriminant Plane
|g 289 --
|g 7.6
|t Rotation of the Discriminant Functions
|g 296 --
|g 7.7
|t Stepwise Discriminant Analysis
|g 296 --
|g 7.8
|t Two Other Studies That Used Discriminant Analysis
|g 297 --
|g 7.9
|t Classification Problem
|g 301 --
|g 7.10
|t Linear vs. Quadratic Classification Rule
|g 316 --
|g 7.11
|t Characteristics of a Good Classification Procedure
|g 316 --
|g Chapter 8
|t Factorial Analysis Of Variance --
|g 8.2
|t Advantages of a Two-Way Design
|g 322 --
|g 8.3
|t Univariate Factorial Analysis
|g 324 --
|g 8.4
|t Factorial Multivariate Analysis of Variance
|g 331 --
|g 8.5
|t Weighting of the Cell Means
|g 332 --
|g 8.6
|t Three-Way MANOVA
|g 335 --
|g Chapter 9
|t Analysis Of Covariance --
|g 9.2
|t Purposes of Covariance
|g 340 --
|g 9.3
|t Adjustment of Posttest Means and Reduction of Error Variance
|g 342 --
|g 9.4
|t Choice of Covariates
|g 345 --
|g 9.5
|t Assumptions in Analysis of Covariance
|g 347 --
|g 9.6
|t Use of ANCOVA With Intact Groups
|g 350 --
|g 9.7
|t Alternative Analyses for Pretest-Posttest Designs
|g 351 --
|g 9.8
|t Error Reduction and Adjustment of Posttest Means for Several Covariates
|g 353 --
|g 9.9
|t MANCOVA -- Several Dependent Variables and Several Covariates
|g 354 --
|g 9.10
|t Testing the Assumption of Homogeneous Regression Hyperplanes on SPSS
|g 355 --
|g 9.11
|t Two Computer Examples
|g 356 --
|g 9.12
|t Bryant-Paulson Simultaneous Test Procedure
|g 361 --
|g Chapter 10
|t Stepdown Analysis --
|g 10.2
|t Four Appropriate Situations for Stepdown Analysis
|g 375 --
|g 10.3
|t Controlling on Overall Type I Error
|g 376 --
|g 10.4
|t Stepdown F's for Two Groups
|g 377 --
|g 10.5
|t Comparison of Interpretation of Stepdown F's vs.
|
505 |
0 |
0 |
|g Univariate F's
|g 379 --
|g 10.6
|t Stepdown F's for k Groups -- Effect of Within and Between Correlations
|g 381 --
|g Chapter 11
|t Confirmatory And Exploratory Factor Analysis --
|g 11.2
|t Nature of Principal Components
|g 386 --
|g 11.3
|t Three Uses for Components as a Variable Reducing Scheme
|g 388 --
|g 11.4
|t Criteria for Deciding on How Many Components to Retain
|g 389 --
|g 11.5
|t Increasing Interpretability of Factors by Rotation
|g 391 --
|g 11.6
|t What Loadings Should Be Used for Interpretation?
|g 393 --
|g 11.7
|t Sample Size and Reliable Factors
|g 395 --
|g 11.8
|t Four Computer Examples
|g 395 --
|g 11.9
|t Communality Issue
|g 409 --
|g 11.11
|t Exploratory and Confirmatory Factor Analysis
|g 411 --
|g 11.12
|t PRELIS
|g 415 --
|g 11.13
|t A LISREL Example Comparing Two A Priori Models
|g 419 --
|g 11.14
|t Identification
|g 427 --
|g 11.15
|t Estimation
|g 429 --
|g 11.16
|t Assessment of Model Fit
|g 430 --
|g 11.17
|t Model Modification
|g 435 --
|g 11.18
|t LISREL 8 Example
|g 437 --
|g 11.19
|t EQS Example
|g 445 --
|g 11.20
|t Some Caveats Regarding Structural Equation Modeling
|g 449 --
|g Chapter 12
|t Canonical Correlation --
|g 12.2
|t Nature of Canonical Correlation
|g 472 --
|g 12.3
|t Significance Tests
|g 473 --
|g 12.4
|t Interpreting the Canonical Variates
|g 475 --
|g 12.5
|t Computer Example Using SAS CANCORR
|g 476 --
|g 12.6
|t A Study That Used Canonical Correlation: Relationship Between Student Needs and Teacher Ratings
|g 479 --
|g 12.7
|t Using SAS for Canonical Correlation on Two Sets of Factor Scores
|g 481 --
|g 12.8
|t Redundancy Index of Stewart and Love
|g 483 --
|g 12.9
|t Rotation of Canonical Variates
|g 485 --
|g 12.10
|t Obtaining More Reliable Canonical Variates
|g 485 --
|g Chapter 13
|t Repeated Measures Analysis --
|g 13.2
|t Single-Group Repeated Measures
|g 496 --
|g 13.3
|t Multivariate Test Statistic for Repeated Measures
|g 497 --
|g 13.4
|t Assumptions in Repeated Measures Analysis
|g 500 --
|g 13.5
|t Computer Analysis of the Drug Data
|g 502 --
|g 13.6
|t Post Hoc Procedures in Repeated Measures Analysis
|g 506 --
|g 13.7
|t Should We Use the Univariate or Multivariate Approach?
|g 509 --
|g 13.8
|t Sample Size for Power = .80 in Single-Sample Case
|g 510 --
|g 13.9
|t Multivariate Matched Pairs Analysis
|g 512 --
|g 13.10
|t One Between and One Within Factor -- A Trend Analysis
|g 512 --
|g 13.11
|t Post Hoc Procedures for the One Between and One Within Design
|g 519 --
|g 13.12
|t One Between and Two Within Factors
|g 521 --
|g 13.13
|t Two Between and One Within Factors
|g 526 --
|g 13.14
|t Two Between and Two Within Factors
|g 532 --
|g 13.15
|t Totally Within Designs
|g 532 --
|g 13.16
|t Planned Comparisons in Repeated Measures Designs
|g 534 --
|g 13.17
|t Profile Analysis
|g 536 --
|g 13.18
|t Doubly Multivariate Repeated Measures Designs
|g 538 --
|g Chapter 14
|t Categorical Data Analysis: The Log Linear Model --
|g 14.2
|t Sampling Distributions: Binomial and Multinomial
|g 561 --
|g 14.3
|t Two Way Chi Square -- Log Linear Formulation
|g 564 --
|g 14.4
|t Three-Way Tables
|g 567 --
|g 14.5
|t Model Selection
|g 576 --
|g 14.6
|t Collapsibility
|g 578 --
|g 14.7
|t Odds (Cross-Product) Ratio
|g 582 --
|g 14.8
|t Normed Fit Index and Residual Analysis
|g 583 --
|g 14.9
|t Residual Analysis
|g 584 --
|g 14.10
|t Cross-Validation
|g 585 --
|g 14.11
|t Higher Dimensional Tables -- Model Selection --
|g 14.12
|t Contrasts for the Log Linear Model
|g 586 --
|g 14.13
|t Log Linear Analysis for Ordinal Data
|g 590 --
|g 14.14
|t Sampling and Structural (Fixed) Zeros
|g 595 --
|g Appendix
|t A Statistical Tables
|g 614 --
|g Appendix B
|t Data Sets
|g 634 --
|g Appendix C
|t Obtaining Nonorthogonal Contrasts in Repeated Measures Designs
|g 653.
|
520 |
|
|
|a CD-ROM contains: Data sets.
|
650 |
|
4 |
|a Πολυμεταβλητή ανάλυση.
|9 11196
|
650 |
|
4 |
|a Κοινωνικές επιστήμες
|x Στατιστικές μέθοδοι
|9 692
|
655 |
|
0 |
|a Ηλεκτρονικά βιβλία
|
856 |
4 |
0 |
|u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=63477
|
942 |
|
|
|2 ddc
|c ERS
|