Bayesian approach to image interpretation /

Bayesian Approach to Image Interpretation will interest anyone working in image interpretation. It is complete in itself and includes background material. This makes it useful for a novice as well as for an expert. It reviews some of the existing probabilistic methods for image interpretation and pr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kopparapu, Sunil K. (συγγραφέας.)
Άλλοι συγγραφείς: Desai, Uday B. (συγγραφέας.)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Kluwer Academic Publishers, c2001.
Σειρά:Kluwer international series in engineering and computer science
Θέματα:
Διαθέσιμο Online:http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=70076
Πίνακας περιεχομένων:
  • Cover
  • Table of Contents
  • List of Figures
  • List of Tables
  • Preface
  • Acknowledgements
  • Chapter 1. Overview
  • 1. Introduction
  • 2. Image Interpretation
  • 3. Literature Review
  • 4. Approaches
  • 5. Layout of the Monograph
  • Chapter 2. Background
  • 1. Introduction
  • 2. Markov Random Field Models
  • 3. Multiresolution
  • Chapter 3. MRF Framework for Image Interpretation
  • 1. MRF on a Graph
  • Chapter 4. Bayesian Net Approach to Interpretation
  • 1. Introduction
  • 2. MRF model leading to Bayesian Network Formulation
  • 3. Bayesian Networks and Probabilistic Inference
  • 4. Probability Updating in Bayesian Networks
  • 5. Bayesian Networks for Gibbsian Image Interpretation
  • 6. Experimental Results
  • 7. Conclusions
  • Chapter 5. Joint Segmentation and Image Interpretation
  • 1. Introduction
  • 2. Image Interpretation using Integration
  • 3. The Joint Segmentation and Image Interpretation Scheme
  • 4. Experimental Results
  • 5. Conclusions
  • Chapter 6. Conclusions
  • Appendices
  • Appendix A. Bayesian Reconstruction
  • Appendix B. Proof of Hammersley-Clifford Theorem
  • 1. Justification for the General form for U(x)
  • Appendix C. Simulated Annealing Algorithm-Selecting T0 in practise
  • 1. Experiments
  • Appendix D. Custom Made Pyramids
  • Appendix E. Proof of Theorem 4.6
  • Appendix F. k-means clustering
  • Appendix G. Features used in Image Interpretation
  • 1. Primary Features
  • 2. Secondary Features
  • Appendix H. Knowledge Acquisition
  • 1. How to merge regions using the XV color editor
  • 2. Acquired Knowledge
  • 3. Knowledge Pyramid
  • Appendix I. HMM for Clique Functions
  • References