Statistical pattern recognition /

Statistical pattern recognition is a very active area of study and research, which has seen many advances in recent years. New and emerging applications - such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition - require robust and efficie...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Webb, A. R. (Andrew R.)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: West Sussex, England ; New Jersey : Wiley, �2002.
Έκδοση:2nd ed.
Θέματα:
Διαθέσιμο Online:http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=83749
LEADER 07661cam a2200889Ia 4500
001 ocm52761377
003 OCoLC
005 20190114101352.0
006 m o d
007 cr cn|||||||||
008 030731s2002 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCG  |d OCLCQ  |d OCLCF  |d OCLCO  |d TEFOD  |d IDEBK  |d EBLCP  |d DG1  |d BTCTA  |d BAKER  |d TEF  |d OKU  |d E7B  |d OCLCE  |d OCLCQ  |d USU  |d DEBSZ  |d TEFOD  |d COO  |d OCLCQ  |d YDX  |d OCLCQ  |d DG1  |d OCLCQ  |d DG1  |d SUR  |d LIP  |d OCLCQ 
019 |a 53865202  |a 85820135  |a 154715297  |a 506103175  |a 647808310  |a 698047637  |a 959954459  |a 960090368  |a 961566283  |a 962715377  |a 984872769 
020 |a 0470854782  |q (electronic bk.) 
020 |a 9780470854785  |q (electronic bk.) 
020 |a 0470845139  |q (acid-free paper) 
020 |a 9780470845134  |q (acid-free paper) 
020 |a 0470845147  |q (pbk. ;  |q acid-free paper) 
020 |a 9780470845141  |q (pbk. ;  |q acid-free paper) 
020 |a 0470854774  |q (electronic bk.) 
020 |a 9780470854778  |q (electronic bk.) 
024 7 |a 10.1002/0470854774  |2 doi 
029 1 |a AU@  |b 000055276751 
029 1 |a AU@  |b 000058044701 
029 1 |a CHNEW  |b 000927521 
029 1 |a CHVBK  |b 480077649 
029 1 |a DEBSZ  |b 43021698X 
029 1 |a DEBSZ  |b 484917714 
035 |a (OCoLC)52761377  |z (OCoLC)53865202  |z (OCoLC)85820135  |z (OCoLC)154715297  |z (OCoLC)506103175  |z (OCoLC)647808310  |z (OCoLC)698047637  |z (OCoLC)959954459  |z (OCoLC)960090368  |z (OCoLC)961566283  |z (OCoLC)962715377  |z (OCoLC)984872769 
037 |b OverDrive, Inc.  |n http://www.overdrive.com 
037 |a 11C27669-C0A9-4AEF-AD05-78630FC70D87  |b OverDrive, Inc.  |n http://www.overdrive.com 
042 |a dlr 
050 4 |a Q327  |b .W43 2002eb 
072 7 |a COM  |x 047000  |2 bisacsh 
082 0 4 |a 006.4  |2 22 
084 |a 31.73  |2 bcl 
049 |a MAIN 
100 1 |a Webb, A. R.  |q (Andrew R.) 
245 1 0 |a Statistical pattern recognition /  |c Andrew R. Webb. 
250 |a 2nd ed. 
260 |a West Sussex, England ;  |a New Jersey :  |b Wiley,  |c �2002. 
300 |a 1 online resource (xviii, 496 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 459-490) and index. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
520 |a Statistical pattern recognition is a very active area of study and research, which has seen many advances in recent years. New and emerging applications - such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition - require robust and efficient pattern recognition techniques. Statistical decision making and estimation are regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fully updated with new methods, applications and references. It provides a comprehensive introduction to this vibrant area - with material drawn from engineering, statistics, computer science and the social sciences - and covers many application areas, such as database design, artificial neural networks, and decision support systems. * Provides a self-contained introduction to statistical pattern recognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vector machines, and unsupervised classification. * Each section concludes with a description of the applications that have been addressed and with further developments of the theory. * Includes background material on dissimilarity, parameter estimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions to more lengthy projects. The book is aimed primarily at senior undergraduate and graduate students studying statistical pattern recognition, pattern processing, neural networks, and data mining, in both statistics and engineering departments. It is also an excellent source of reference for technical professionals working in advanced information development environments. 
533 |a Electronic reproduction.  |b [S.l.] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a 1. Introduction to statistical pattern recognition -- Statistical pattern recognition -- Stages in a pattern recognition problem -- Issues -- Supervised versus unsupervised -- Approaches to statistical pattern recognition -- Multiple regression -- Outline of book -- 2. Density estimation -- parametric -- Normal-based models -- Normal mixture models -- Bayesian estimates -- 3. Density estimation -- nonparametric -- Histogram method -- k-nearest-neighbour method -- Expansion by basis functions -- Kernel methods -- 4. Linear discriminant analysis -- Two-class algorithms -- Multiclass algorithms -- Logistic discrimination -- 5. Nonlinear discriminant analysis -- kernel methods -- Optimisation criteria -- Radial basis functions -- Nonlinear support vector machines -- 6. Nonlinear discriminant analysis -- projection methods -- The multilayer perceptron -- Projection pursuit -- 7. Tree-based methods -- Classification trees -- Multivariate adaptive regression splines -- 8. Performance -- Performance assessment -- Comparing classifier performance -- Combining classifiers -- 9. Feature selection and extraction -- Feature selection -- Linear feature extraction -- Multidimensional scaling -- 10. Clustering -- Hierarchical methods -- Quick partitions -- Mixture models -- Sum-of-squares methods -- Cluster validity -- 11. Additional topics -- Model selection -- Learning with unreliable classification -- Missing data -- Outlier detection and robust procedures -- Mixed continuous and discrete variables -- Structural risk minimisation and the Vapnik-Chervonenkis dimension -- A. Measures of dissimilarity -- B. Parameter estimation -- C. Linear algebra -- D. Data -- E. Probability theory. 
590 |a OCLC  |b WorldCat Holdings 
590 |a eBooks on EBSCOhost  |b All EBSCO eBooks 
650 0 |a Pattern perception  |x Statistical methods. 
650 6 |a Perception des structures  |x M�ethodes statistiques. 
650 7 |a COMPUTERS  |x Optical Data Processing.  |2 bisacsh 
650 7 |a Pattern perception  |x Statistical methods.  |2 fast  |0 (OCoLC)fst01055263 
650 1 7 |a Discriminantanalyse.  |2 gtt 
650 1 7 |a Clusteranalyse.  |2 gtt 
650 1 7 |a Classificatie.  |2 gtt 
650 7 |a Reconhecimento de padr�oes.  |2 larpcal 
650 7 |a Computa�c�ao gr�afica.  |2 larpcal 
653 |a Computational and graphical statistics. 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Webb, A.R. (Andrew R.).  |t Statistical pattern recognition.  |b 2nd ed.  |d West Sussex, England ; New Jersey : Wiley, �2002  |z 0470845139  |z 0470845147  |w (DLC) 2002072631  |w (OCoLC)50080310 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=83749 
938 |a Baker & Taylor  |b BKTY  |c 175.00  |d 175.00  |i 0470854774  |n 0007268921  |s active 
938 |a Baker and Taylor  |b BTCP  |n BK0007268921 
938 |a EBL - Ebook Library  |b EBLB  |n EBL158121 
938 |a ebrary  |b EBRY  |n ebr10307938 
938 |a EBSCOhost  |b EBSC  |n 83749 
938 |a YBP Library Services  |b YANK  |n 2297129 
938 |a YBP Library Services  |b YANK  |n 2942185 
994 |a 92  |b GRPAT 
999 |c 138661  |d 138661