Statistical pattern recognition /

Statistical pattern recognition is a very active area of study and research, which has seen many advances in recent years. New and emerging applications - such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition - require robust and efficie...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Webb, A. R. (Andrew R.)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: West Sussex, England ; New Jersey : Wiley, �2002.
Έκδοση:2nd ed.
Θέματα:
Διαθέσιμο Online:http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=83749
Πίνακας περιεχομένων:
  • 1. Introduction to statistical pattern recognition
  • Statistical pattern recognition
  • Stages in a pattern recognition problem
  • Issues
  • Supervised versus unsupervised
  • Approaches to statistical pattern recognition
  • Multiple regression
  • Outline of book
  • 2. Density estimation
  • parametric
  • Normal-based models
  • Normal mixture models
  • Bayesian estimates
  • 3. Density estimation
  • nonparametric
  • Histogram method
  • k-nearest-neighbour method
  • Expansion by basis functions
  • Kernel methods
  • 4. Linear discriminant analysis
  • Two-class algorithms
  • Multiclass algorithms
  • Logistic discrimination
  • 5. Nonlinear discriminant analysis
  • kernel methods
  • Optimisation criteria
  • Radial basis functions
  • Nonlinear support vector machines
  • 6. Nonlinear discriminant analysis
  • projection methods
  • The multilayer perceptron
  • Projection pursuit
  • 7. Tree-based methods
  • Classification trees
  • Multivariate adaptive regression splines
  • 8. Performance
  • Performance assessment
  • Comparing classifier performance
  • Combining classifiers
  • 9. Feature selection and extraction
  • Feature selection
  • Linear feature extraction
  • Multidimensional scaling
  • 10. Clustering
  • Hierarchical methods
  • Quick partitions
  • Mixture models
  • Sum-of-squares methods
  • Cluster validity
  • 11. Additional topics
  • Model selection
  • Learning with unreliable classification
  • Missing data
  • Outlier detection and robust procedures
  • Mixed continuous and discrete variables
  • Structural risk minimisation and the Vapnik-Chervonenkis dimension
  • A. Measures of dissimilarity
  • B. Parameter estimation
  • C. Linear algebra
  • D. Data
  • E. Probability theory.