Understanding regression analysis /

Proceeding on the assumption that it is possible to develop a sufficient understanding of this technique without resorting to mathematical proofs and statistical theory, Understanding Regression Analysis explores Descriptive statistics using vector notation and the components of a simple regression...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Allen, Michael Patrick
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York : Plenum Press, �1997.
Θέματα:
Διαθέσιμο Online:http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=34594
Πίνακας περιεχομένων:
  • Origins and uses of regression analysis
  • Basic matrix algebra: manipulating vectors
  • Mean and variance of a variable
  • Regression models and linear functions
  • Errors of prediction and least-squares estimation
  • Covariance and linear independence
  • Separating explained and error variance
  • Transforming variables to standard form
  • Regression analysis with standardized variables
  • Populations, samples, and sampling distributions
  • Sampling distributions and test statistics
  • Testing hypotheses using the t test
  • t test for the simple regression coefficient
  • More matrix algebra: manipulating matrices
  • Multiple regression model
  • Normal equations and partial regression coefficients
  • Partial regression and residualized variables
  • Coefficient of determination in multiple regression
  • Standard errors of partial regression coefficents
  • Incremental contributions of variables
  • Testing simple hypotheses using the f test
  • Testing for interaction in multiple regression
  • Nonlinear relationships and variable transformations
  • Regression analysis with dummy variables
  • One-way analysis of variance using the regression model
  • Two-way analysis of variance using the regression model
  • Testing for interaction in analysis of variance
  • Analysis of covariance using the regression model
  • Interpreting interaction in analysis of covariance
  • Structural equation models and path analysis
  • Computing direct and total effects of variables
  • Model specification in regression analysis
  • Influential cases in regression analysis
  • Problem of multicollinearity
  • Assumptions of ordinary least-squares estimation
  • Beyond ordinary regression analysis.