Principal components analysis /
Principal components analysis offers researchers a 'feel' for analysing particular sets of multidimensional data. It is particularly useful in coping with multicolinearity in regression analysis, a persistent problem in behavioral and social science data sets.
Κύριος συγγραφέας: | |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Newbury Park :
Sage Publications,
�1989.
|
Σειρά: | Quantitative applications in the social sciences ;
no. 07-069. |
Θέματα: | |
Διαθέσιμο Online: | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=24769 |
Πίνακας περιεχομένων:
- 1. Introduction
- Example
- 2. Basic concepts of principal components analysis
- 3. geometrical properties of principal components
- Example
- 4. Decomposition properties of principal components
- Decomposition of the variables
- Spectral decomposition of the correlation or covariance matrix
- 5. Principal components of patterned correlation matrices
- Example
- 6. Rotation of principal components
- Example
- 7. Using principal components to select a subset of variables
- Example
- 8. Principal components versus factor analysis
- Example
- Factor rotation
- 9. Uses of principal components in regression analysis
- Regression on principal components
- Principal components regression
- Example
- 10. Using principal components to detect outlying and influential observations
- 11. Use of principal components in cluster analysis
- 12. Use of principal components analysis in conjunction with other multivariate analysis procedures
- Use of principal components in discriminant analysis
- Example
- Use of principal components in canonical correlation analysis
- 13. Other techniques related to principal components
- Principal coordinate analysis
- Correspondence analysis.