Charged beam dynamics, particle accelerators and free electron lasers /

Charged Beam Dynamics, Particle Accelerators and Free Electron Lasers' summarises different topics in the field of accelerators and of Free Electron Laser (FEL) devices. It explains how to design both an FEL device and the accelerator providing the driving beam. Covering both theoretical and ex...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Dattoli, G. (συγγραφέας.), Doria, Andrea (συγγραφέας.), Sabia, Elio (συγγραφέας.), Artioli, Marcello, 1970- (συγγραφέας.)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Bristol : IOP Publishing, c2017.
Σειρά:IOP plasma physics series.
IOP expanding physics.
Θέματα:
Διαθέσιμο Online:http://iopscience.iop.org/book/978-0-7503-1239-4
Πίνακας περιεχομένων:
  • Preface
  • 1. Charged particle dynamics and beam transport optics
  • 1.1. Introduction
  • 1.2. A planar diode and the Child-Langmuir law
  • 1.3. The klystron concept
  • 1.4. Charged particle motion in combined electric and magnetic fields (the non-relativistic case)
  • 1.5. Charged particle motion in combined electric and magnetic fields (the relativistic case)
  • 1.6. Hamiltonian theory of charged particle motion
  • 1.7. Beam transport, Liouville theorem and beam emittance
  • 1.8. The Vlasov equation and beam transport
  • 1.9. The Vlasov equation and the method of momenta
  • 1.10. Emittance, normalized emittance and beam brightness
  • 1.11. Beam transport elements, dipole, quadrupoles ...
  • 1.12. Beam transport and matrix formalism
  • 1.13. Composed transport devices and the matrix formalism
  • 1.14. Beam transport : a few pragmatic remarks
  • 1.15. Complements and exercises
  • 2. Linear accelerators
  • 2.1. Introduction
  • 2.2. Accelerating cavities, shunt impedance and quality factor
  • 2.3. Electromagnetic fields and accelerating cavities
  • 2.4. Disk loaded cavities and accelerating conditions
  • 2.5. The linac design key quantities
  • 2.6. Phase stability in linacs
  • 2.7. Beam qualities and accelerating field
  • 2.8. Complements and exercises
  • 3. Free-electron-based generators of electromagnetic radiation
  • 3.1. An introduction to the process of emission/absorption of photons by free electrons
  • 3.2 Electron-field energy exchange
  • 3.3. Coherent generation of radiation by a charged particle beam
  • 3.4. A single cavity as a basic structure
  • 3.5. General form of the electron-field coupling coefficient in cylindrical cavities
  • 3.6. The klystron
  • 3.7. The travelling wave amplifier
  • 3.8. The backward wave oscillator
  • 3.9. Electron-based source characteristics and limitations
  • 3.10. Radiation by moving charges and synchrotron radiation emission
  • 3.11. The magnetic undulator
  • 3.12. The gain mechanism
  • 4. Linac-based free electron laser devices : oscillator and single passage operating modes
  • 4.1. Introduction
  • 4.2. Free electron laser
  • 4.3. The FEL small signal equation low and high-gain regimes
  • 4.4. FEL oscillators : a preliminary analysis
  • 4.5. FEL oscillators : mode locking
  • 4.6. Designing an FEL-O device
  • 4.7. High-gain FEL devices
  • 4.8. High-gain FEL equation and the relevant consequences
  • 4.9. Concluding comments
  • 4.10. Complements and exercises
  • 5. Compact FEL devices and new acceleration schemes
  • 5.1. Introduction
  • 5.2. Plasma acceleration : preliminary concepts
  • 5.3. Plasma acceleration : beam production and scaling identities
  • 5.4. FEL and laser plasma accelerated beams : general considerations
  • 5.5. FEL operating with laser wave undulators : general considerations
  • 5.6. Concluding comments
  • 5.7. Complements and exercises.