Solitons in crystalline processes : statistical thermodynamics of structural phase transitions and mesoscopic disorder /

Solitons in Crystalline Processes is an introduction to the statistical thermodynamics of phase transitions in crystallized solids. This book is written as an introductory treatise with respect to the soliton concept, from structural transitions where the crystal symmetry changes, to magnets and sup...

Full description

Bibliographic Details
Main Author: Fujimoto, Minoru (συγγραφέας.)
Format: eBook
Language:English
Published: Bristol : IOP Publishing, c2017.
Series:IOP expanding physics.
Subjects:
Online Access:http://iopscience.iop.org/book/978-0-7503-1514-2
LEADER 07959nam a2200577 i 4500
001 9780750315142
003 IOP
005 20210304075157.0
006 m eo d
007 cr cn |||m|||a
008 171211s2017 enka ob 000 0 eng d
999 |c 139171  |d 139171 
020 |a 9780750315142  |q ebook 
020 |a 9780750315135  |q mobi 
020 |z 9780750315128  |q print 
040 |a CaBNVSL  |b gre  |e AACR2  |c GR-PaULI  |d GR-PaULI 
082 0 4 |a 548.86  |2 23 
100 |a Fujimoto, Minoru  |e συγγραφέας.  |9 69670 
245 1 0 |a Solitons in crystalline processes :  |b statistical thermodynamics of structural phase transitions and mesoscopic disorder /  |c Minoru Fujimoto. 
246 3 0 |a Statistical thermodynamics of structural phase transitions and mesoscopic disorder. 
260 |a Bristol :  |b IOP Publishing,  |c c2017. 
300 |a 1 ηλεκτρονική πηγή (ποικίλες σελιδαριθμήσεις) :  |b εικ. 
490 1 |a IOP expanding physics,  |x 2053-2563 
504 |a Περιλαμβάνει βιβλιογραφικές παραπομπές. 
505 0 |a Preface -- 0. Introduction -- 0.1. The internal energy of equilibrium crystals -- 0.2. Microscopic order variables and their fluctuations -- 0.3. Collective order variables in propagation -- 0.4. Crystal surfaces and entropy production -- 0.5. Timescales for sampling modulated structure and thermodynamic measurements -- 0.6. Statistical theories and the mean-field approximation 
505 8 |a part I. Binary transitions -- 1. Phonons and internal energies of stable lattices -- 1.1. Symmetry group in crystals -- 1.2. Normal modes in a monatomic lattice -- 1.3. Quantized normal modes -- 1.4. Phonon field and momentum -- 1.5. Specific heat of monatomic crystals -- 1.6. Approximate phonon distributions -- 1.7. Phonon correlations 
505 8 |a 2. Displacive order variables in collective mode and adiabatic potentials -- 2.1. One-dimensional ionic chain -- 2.2. Displacive order variables -- 2.3. Born-Oppenheimer's asymptotic approximation and adiabatic potentials -- 2.4. The Bloch theorem for collective order variables 
505 8 |a 3. Pseudospin clusters and the Born-Huang principle -- 3.1. Pseudospins for binary displacements -- 3.2. The Born-Huang principle and pseudospin clusters -- 3.3. Properties of pseudospin clusters -- 3.4. Examples of pseudospin clusters 
505 8 |a 4. Critical phase fluctuations of pseudospin modes -- 4.1. Landau's theory and Curie-Weiss' law -- 4.2. Fluctuations of pseudospin clusters in adiabatic potentials -- 4.3. Observing critical anomalies -- 4.4. Extrinsic pinning 
505 8 |a part II. Experimental studies on critical anomalies and soft modes -- 5. Scattering experiments on critical anomalies -- 5.1. X-ray diffraction -- 5.2. Diffuse diffraction from a modulated lattice -- 5.3. Neutron inelastic scatterings -- 5.4. Light scattering experiments 
505 8 |a 6. Magnetic resonance studies on critical anomalies -- 6.1. Magnetic resonance -- 6.2. Magnetic resonance in modulated crystals -- 6.3. Examples of transition anomalies 
505 8 |a 7. Soft modes of lattice displacements -- 7.1. The Lyddane-Sachs-Teller relation in dielectric crystals -- 7.2. Soft modes in perovskite oxides -- 7.3. Lattice response to collective pseudospins -- 7.4. Temperature dependence of soft-mode frequencies -- 7.5. Cochran's model of a ferroelectric transition -- 7.6. Symmetry change at Tc 
505 8 |a part III. Soliton theory of lattice dynamics -- 8. Displacive waves and complex adiabatic potentials in finite crystals -- 8.1. Internal pinning of collective pseudospins -- 8.2. Transverse components and the cnoidal potential -- 8.3. Finite crystals and the domain structure -- 8.4. Lifshitz' incommensurability -- 8.5. The Klein-Gordon equation 1 -- 8.6. Pseudopotentials in crystals 
505 8 |a 9. The Weiss field of soliton potentials for developing nonlinearity -- 9.1. Dispersive equations in asymptotic approximation -- 9.2. The Korteweg-de Vries equation -- 9.3. Solutions of the Korteweg-de Vries equation -- 9.4. Thermodynamic transitions and the Eckart potential -- 9.5. Condensate pinning by the Eckart potentials -- 9.6. Elemental solitons at singular transitions -- 9.7. Riccati's thermodynamic transitions 
505 8 |a 10. Soliton mobility in time-temperature conversion -- 10.1. Bargmann's theorem of amplitude modulation -- 10.2. Riccati's theorem and the modified Korteweg-de Vries equation -- 10.3. Soliton mobility studied by computational analysis 
505 8 |a 11. Toda's theorem of soliton lattice -- 11.1. The Toda lattice -- 11.2. Developing nonlinearity with Toda's correlation potentials -- 11.3. Infinite periodic lattice -- 11.4. Scattering and capture by singular adiabatic potentials -- 11.5. The Gelfand-Levitan-Marchenko theorem -- 11.6. Entropy production at singularities -- 11.7. The Toda lattice and the Korteweg-de Vries equation -- 11.8. Topological strain mapping of mesoscopic Toda lattices 
505 8 |a 12. Transversal correlations and the domain structure -- 12.1. The Klein-Gordon equation 2 for phase modulation -- 12.2. The B�acklund transformation and domain boundaries -- 12.3. Computational studies of the B�acklund transformation -- 12.4. Trigonal structural transitions -- 12.5. Toda's theory of domain stability -- 12.6. Kac's theory of nonlinear development and boundary instability -- 12.7. Domain separation; thermal and quasi-adiabatic transitions -- 12.8. Transversal correlations in crystalline polymers 
505 8 |a part IV. Superconducting and magnetic systems -- 13. Phonons, solitons and electrons in finite metallic phases -- 13.1. Phonon statistics in metallic states -- 13.2. Solitons in modulated metals -- 13.3. Conduction electrons in normal metallic states -- 13.4. The multi-electron system -- 13.5. The Fermi-Dirac statistics 
505 8 |a 14. Soliton theory of superconducting transitions -- 14.1. The Fr�ohlich condensate -- 14.2. The Cooper pair and superconducting transition -- 14.3. Persistent supercurrent -- 14.4. Critical energy gap and the superconducting ground state 
505 8 |a 15. High-Tc superconductors -- 15.1. Superconducting transitions under isothermal conditions -- 15.2. Protonic superconducting transitions under high-pressure conditions -- 15.3. Summary: superconducting transitions 
505 8 |a 16. Superconducting states in metallic crystals -- 16.1. Meissner's diamagnetism -- 16.2. Electromagnetic properties of superconductors -- 16.3. The Ginzburg-Landau equation -- 16.4. Field theories of superconducting transitions 
505 8 |a 17. Magnetic crystals -- 17.1. Microscopic magnetic moments -- 17.2. Brillouin's formula -- 17.3. Spin-spin exchange correlations -- 17.4. Collective propagation of Larmor's precession -- 17.5. Magnetic Weiss field -- 17.6. Spin waves -- 17.7. Magnetic anisotropy -- 17.8. Antiferromagnetic and ferromagnetic states -- 17.9. Fluctuations in ferromagnetic and antiferromagnetic states 
505 8 |a Concluding remarks -- Appendices -- A. A note on liquid crystals -- B. A note on computational studies -- C. Hyperbolic and elliptic functions. 
520 3 |a Solitons in Crystalline Processes is an introduction to the statistical thermodynamics of phase transitions in crystallized solids. This book is written as an introductory treatise with respect to the soliton concept, from structural transitions where the crystal symmetry changes, to magnets and superconductors, describing the role of nonlinear excitations in detail. 
650 0 |a Κρύσταλλοι  |x Θερμικές ιδιότητες  |9 173334 
650 0 |a Στατιστική θερμοδυναμική  |9 108498 
650 0 |a Μετασχηματισμοί φάσης (Στατιστική φυσική)  |9 173335 
650 0 |a Σολιτόνια  |9 5352 
830 0 |a IOP expanding physics. 
856 4 0 |u http://iopscience.iop.org/book/978-0-7503-1514-2 
942 |2 ddc  |c ERS