Theoretical fluid mechanics /
Theoretical Fluid Mechanics' has been written to aid physics students who wish to pursue a course of self-study in fluid mechanics. It is a comprehensive, completely self-contained text with equations of fluid mechanics derived from first principles, and any required advanced mathematics is eit...
Κύριος συγγραφέας: | |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Bristol :
IOP Publishing,
c2017.
|
Σειρά: | IOP expanding physics.
|
Θέματα: | |
Διαθέσιμο Online: | https://iopscience.iop.org/book/978-0-7503-1554-8 |
Πίνακας περιεχομένων:
- 1. Mathematical models of fluid motion
- 1.1. Introduction
- 1.2. What is a fluid?
- 1.3. Volume and surface forces
- 1.4. General properties of the stress tensor
- 1.5. Stress tensor in a static fluid
- 1.6. Stress tensor in a moving fluid
- 1.7. Viscosity
- 1.8. Conservation laws
- 1.9. Mass conservation
- 1.10. Convective time derivative
- 1.11. Momentum conservation
- 1.12. Navier-Stokes equation
- 1.13. Energy conservation
- 1.14. Equations of incompressible fluidflow
- 1.15. Equations of compressible fluid flow
- 1.16. Dimensionless numbers in incompressible flow
- 1.17. Dimensionless numbers in compressible flow
- 1.18. Fluid equations in Cartesian coordinates
- 1.19. Fluid equations in cylindrical coorinates
- 1.20. Fluid equations in spherical coordinates
- 1.21. Exercises
- 2. Hydrostatics
- 2.1. Introduction
- 2.2. Hydrostatic pressure
- 2.3. Buoyancy
- 2.4. Equilibria of floating bodies
- 2.5. Vertical stability of floating bodies
- 2.6. Angular stability of floating bodies
- 2.7. Determination of metacentric height
- 2.8. Energy of a floating body
- 2.9. Curve of buoyancy
- 2.10. Rotational hydrostatics
- 2.11. Equilibrium of a rotating liquid body
- 2.12. Maclaurin spheroids
- 2.13. Jacobi ellipsoids
- 2.14. Roche ellipsoids
- 2.15. Exercises
- 3. Surface tension
- 3.1. Introduction
- 3.2. Young-Laplace equation
- 3.3. Spherical interfaces
- 3.4. Capillary length
- 3.5. Angle of contact
- 3.6. Jurin's law
- 3.7. Capillary curves
- 3.8. Axisymmetric soap-bubbles
- 3.9. Exercises
- 4. Incompressible inviscid flow
- 4.1. Introduction
- 4.2. Streamlines, stream tubes, and stream filaments
- 4.3. Bernoulli's theorem
- 4.4. Euler's momentum theorem
- 4.5. d'Alembert's paradox
- 4.6. Flow through an orifice
- 4.7. Sub-critical and super-critical flow
- 4.8. Flow over a shallow bump
- 4.9. Stationary hydraulic jumps
- 4.10. Tidal bores
- 4.11. Flow over a broad-crested weir
- 4.12. Vortex lines, vortex tubes, and vortex filaments
- 4.13. Circulation and vorticity
- 4.14. Kelvin's circulation theorem
- 4.15. Irrotational flow
- 4.16. Exercises
- 5. Two-dimensional incompressible inviscid flow
- 5.1. Introduction
- 5.2. Two-dimensional flow
- 5.3. Velocity potentials and stream functions
- 5.4. Two-dimensional uniform flow
- 5.5. Two-dimensional sources and sinks
- 5.6. Two-dimensional vortex filaments
- 5.7. Two-dimensional irrotational flow in cylindrical coordinates
- 5.8. Flow past a cylindrical obstacle
- 5.9. Motion of a submerged cylinder
- 5.10. Inviscid flow past a semi-infinite wedge
- 5.11. Inviscid flow over a semi-infinite wedge
- 5.12. Two-dimensional jets
- 5.13. Exercises
- 6. Two-dimensional potential flow
- 6.1. Introduction
- 6.2. Complex functions
- 6.3. Cauchy-Riemann relations
- 6.4. Complex velocity potential
- 6.5. Complex velocity
- 6.6. Method of images
- 6.7. Conformal maps
- 6.8. Schwarz-Christoffel theorem
- 6.9. Free streamline theory
- 6.10. Complex line integrals
- 6.11. Blasius' theorem
- 6.12. Exercises
- 7. Axisymmetric incompressible inviscid flow
- 7.1. Introduction
- 7.2. Axisymmetric flow
- 7.3. Stokes stream function
- 7.4. Axisymmetric velocity fields
- 7.5. Axisymmetric irrotational flow in spherical coordinates
- 7.6. Uniform flow
- 7.7. Point sources
- 7.8. Dipole point sources
- 7.9. Flow past a spherical obstacle
- 7.10. Motion of a submerged sphere
- 7.11. Conformal maps
- 7.12. Flow around a submerged oblate spheroid
- 7.13. Flow around a submerged prolate spheroid
- 7.14. Exercises
- 8. Incompressible boundary layers
- 8.1. Introduction
- 8.2. No-slip condition
- 8.3. Boundary layer equations
- 8.4. Self-similar boundary layers
- 8.5. Boundary layer on a flat plate
- 8.6. Wake downstream of a flat plate
- 8.7. Von K�arm�an momentum integral
- 8.8. Boundary layer separation
- 8.9. Criterion for boundary layer separation
- 8.10. Approximate solutions of boundary layer equations
- 8.11. Exercises
- 9. Incompressible aerodynamics
- 9.1. Introduction
- 9.2. Kutta-Zhukovskii theorem
- 9.3. Cylindrical airfoils
- 9.4. Zhukovskii's hypothesis
- 9.5. Vortex sheets
- 9.6. Induced flow
- 9.7. Three-dimensional airfoils
- 9.8. Aerodynamic forces
- 9.9. Ellipsoidal airfoils
- 9.10. Simple flight problems
- 9.11. Exercises
- 10. Incompressible viscous flow
- 10.1. Introduction
- 10.2. Flow between parallel plates
- 10.3. Flow down an inclined plane
- 10.4. Poiseuille flow
- 10.5. Taylor-Couette flow
- 10.6. Flow in slowly-varying channels
- 10.7. Lubrication theory
- 10.8. Stokes flow
- 10.9. Axisymmetric Stokes flow
- 10.10. Axisymmetric Stokes flow around a solid sphere
- 10.11. Axisymmetric Stokes flow in and around a fluid sphere
- 10.12. Exercises
- 11. Waves in incompressible fluids
- 11.1. Introduction
- 11.2. Gravity waves
- 11.3. Gravity waves in deep water
- 11.4. Gravity waves in shallow water
- 11.5. Energy of gravity waves
- 11.6. Wave drag on ships
- 11.7. Ship wakes
- 11.8. Gravity waves in a flowing fluid
- 11.9. Gravity waves at an interface
- 11.10. Steady flow over a corrugated bottom
- 11.11. Surface tension
- 11.12. Capillary waves
- 11.13. Capillary waves at an interface
- 11.14. Wind-driven waves in deep water
- 11.15. Exercises
- 12. Terrestrial ocean tides
- 12.1. Introduction
- 12.2. Tide-generating potential
- 12.3. Decomposition of tide-generating potential
- 12.4. Expansion of tide-generating potential
- 12.5. Surface harmonics and solid harmonics
- 12.6. Planetary rotation
- 12.7. Total gravitational potential
- 12.8. Planetary response
- 12.9. Laplace tidal equations
- 12.10. Harmonics of the forcing term in the Laplace tidal equations
- 12.11. Response to the equilibrium harmonic
- 12.12. Global ocean tides
- 12.13. Non-global ocean tides
- 12.14. Useful lemma
- 12.15. Transformation of Laplace tidal equations
- 12.16. Another useful lemma
- 12.17. Basis eigenfunctions
- 12.18. Auxiliary eigenfunctions
- 12.19. Gyroscopic coefficients
- 12.20. Proudman equations
- 12.21. Hemispherical ocean tides
- 12.22. Exercises
- 13. Equilibria of compressible fluids
- 13.1. Introduction
- 13.2. Isothermal atmosphere
- 13.3. Adiabatic atmosphere
- 13.4. Atmospheric stability
- 13.5. Eddington solar model
- 13.6. Exercises
- 14. One-dimensional compressible inviscid flow
- 14.1. Introduction
- 14.2. Thermodynamic considerations
- 14.3. Isentropic flow
- 14.4. Sound waves
- 14.5. Bernoulli's theorem
- 14.6. Mach number
- 14.7. Sonic flow through a nozzle
- 14.8. Normal shocks
- 14.9. Piston-generated shock wave
- 14.10. Piston-generated expansion wave
- 14.11. Exercises
- 15. Two-dimensional compressible inviscid flow
- 15.1. Introduction
- 15.2. Oblique shocks
- 15.3. Supersonic flow in a corner or over a wedge
- 15.4. Weak oblique shocks
- 15.5. Supersonic compression by turning
- 15.6. Supersonic expansion by turning
- 15.7. Detached shocks
- 15.8. Shock-expansion theory
- 15.9. Thin-airfoil theory
- 15.10. Crocco's theorem
- 15.11. Homenergic homentropic flow
- 15.12. Small-perturbation theory
- 15.13. Subsonic flow past a wave-shaped wall
- 15.14. Supersonic flow past a wave-shaped wall
- 15.15. Linearized subsonic flow
- 15.16. Linearized supersonic flow
- 15.17. Flat lifting wings
- 15.18. Exercises
- Appendices. A Vectors and vector fields
- A.1. Introduction
- A.2. Scalars and vectors
- A.3. Vector algebra
- A.4. Cartesian components of a vector
- A.5. Coordinate transformations
- A.6. Scalar product
- A.7. Vector area
- A.8. Vector product
- A.9. Rotation
- A.10. Scalar triple product
- A.11. Vector triple product
- A.12. Vector calculus
- A.13. Line integrals
- A.14. Vector line integrals
- A.15. Surface integrals
- A.16. Vector surface integrals
- A.17. Volume integrals
- A.18. Gradient
- A.19. Grad operator
- A.20. Divergence
- A.21. Laplacian operator
- A.22. Curl
- A.23. Useful vector identities
- A.24. Exercises
- B. Cartesian tensors
- B.1. Introduction
- B.2. Tensors and tensor notation
- B.3. Tensor transformation
- B.4. Tensor fields
- B.5. Isotropic tensors
- B.6. Exercises
- C. Non-Cartesian coordinates
- C.1. Introduction
- C.2. Orthogonal curvilinear coordinates
- C.3. Cylindrical coordinates
- C.4. Spherical coordinates
- C.5. Exercises
- D. Ellipsoidal potential theory
- D.1. Introduction
- D.2. Analysis
- D.3. Exercises
- E. Calculus of variations
- E.1. Introduction
- E.2. Euler-Lagrange equation
- E.3. Conditional variation
- E.4. Multi-function variation
- E.5. Exercises
- F. Solutions to exercises in chapter 1
- G. Solutions to exercises in chapter 2
- H. Solutions to exercises in chapter 3
- I. Solutions to exercises in chapter 4
- J. Solutions to exercises in chapter 5
- K. Solutions to exercises in chapter 6
- L. Solutions to exercises in chapter 7
- M. Solutions to exercises in chapter 8
- N. Solutions to exercises in chapter 9
- O. Solutions to exercises in chapter 10
- P. Solutions to exercises in chapter 11
- Q. Solutions to exercises in chapter 12
- R. Solutions to exercises in chapter 13
- S. Solutions to exercises in chapter 14
- T. Solutions to exercises in chapter 15
- U. Solutions to exercises in appendix A
- V. Solutions to exercises in appendix B
- W. Solutions to exercises in appendix C
- X. Solutions to exercises in appendix D
- Y. Solutions to exercises in appendix E.