What's the matter with waves? : an introduction to techniques and applications of quantum mechanics /
Like rocket science or brain surgery, quantum mechanics is pigeonholed as a daunting and inaccessible topic, which is best left to an elite or peculiar few. This classification was not earned without some degree of merit. Depending on perspective; quantum mechanics is a discipline or philosophy, a c...
Κύριος συγγραφέας: | |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
San Rafael [Καλιφόρνια] :
Morgan & Claypool Publishers,
c2017.
|
Σειρά: | IOP concise physics.
Series on wave phenomena in the physical sciences. |
Θέματα: | |
Διαθέσιμο Online: | http://iopscience.iop.org/book/978-1-6817-4577-0 |
Πίνακας περιεχομένων:
- 1. Introduction
- 2. Motion in matter
- 3. Vibrating matter
- 4. Rotating matter
- 5. Translating matter
- 6. Quantum translation
- 6.1. Stationary state wavefunctions
- 6.2. Unconstrained one-dimensional translation
- 6.3. One-dimensional translation in a box
- 6.4. Multi-dimensional translation in a box
- 7. Interpreting quantum mechanics
- 7.1. The probability density
- 7.2. Eigenvectors and basis sets
- 7.3. Projection operators
- 7.4. Expectation values
- 7.5. The uncertainty principle
- 8. Quantum rotation
- 8.1. Circular motion : the particle on a ring
- 8.2. Spherical motion : the particle on a sphere
- 9. Quantum vibration
- 9.1. Harmonic oscillation
- 9.2. Anharmonicity
- 10. Variational methods
- 10.1. Prologue
- 10.2. The variational principle
- 10.3. Determining expansion coefficients
- 11. Electrons in atoms
- 11.1. Rotational motion due to a central potential : the hydrogen atom
- 11.2. Properties of the hydrogen atom solutions
- 11.3. Electron spin
- 11.4. Populating many-electron atoms
- 11.5. Many-body wavefunctions
- 11.6. Antisymmetry
- 11.7. Angular momentum in many-electron atoms
- 12. Perturbation theory
- 12.1. Rayleigh Schrödinger perturbation theory
- 12.2. Applications of perturbation theory
- 12.3. The resolvent operator
- 12.4. Techniques for solving the sum over states equations
- 13. Electrons in molecules
- 13.1. The simplest molecular model : a one-electron diatomic
- 13.2. The hydrogen molecule
- 13.3. Practical information regarding calculations
- 13.4. Qualitative molecular orbital theory for homonuclear diatomics
- 13.5. The Hückel method
- Appendices.
- A. Physical constants and units
- B. Calculus and trigonometry essentials.