Lattice Boltzmann modeling of complex flows for engineering applications /

Nature continuously presents a huge number of complex and multiscale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since the very first years of the third millennium, the Lattice Boltzmann method (LB) has seen an exponential growt...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Montessori, Andrea (συγγραφέας.)
Άλλοι συγγραφείς: Falcucci, Giacomo (συγγραφέας.)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: San Rafael [Καλιφόρνια] : Morgan & Calypool Publishers, c2017.
Σειρά:IOP concise physics.
Θέματα:
Διαθέσιμο Online:http://iopscience.iop.org/book/978-1-6817-4672-2
Πίνακας περιεχομένων:
  • 1. Introduction
  • 2. The Lattice Boltzmann equation for complex flows
  • 2.1. Kinetic and lattice kinetic theory : a brief overview
  • 2.2. The Lattice Boltzmann equation
  • 3. Lattice schemes for multiphase and multicomponent flows : theory and applications
  • 3.1. The pseudopotential approach for multiphase flows
  • 3.2. Discretisation of the non-ideal forcing term on higher-order lattices
  • 3.3. Entropic lattice pseudo-potentials for multiphase flow simulations
  • 3.4. Applications and results
  • 4. Lattice Boltzmann models for fluid-structure interaction problems
  • 4.1. Fluid-structure interaction--rigid cantilevers
  • 4.2. Fluid-structure interaction--wedge-shaped bodies
  • 4.3. Free surface simulation in water entry problems
  • 5. Extended Lattice Boltzmann model for rarefied nonequilibrium flows in porous media
  • 5.1. Extended LB approach : higher-order regularization and kinetic boundary conditions
  • 5.2. Flow across flat plates at increasing Knudsen
  • 5.3. Three-dimensional flow through array of sphere
  • 6. Lattice Boltzmann approach to reactive flows in nano-porous catalysts
  • 6.1. Relevant non-dimensional numbers in reactive flows
  • 6.2. The reactive boundary condition
  • 6.3. Consistency of reaction time
  • 6.4. Numerical simulations
  • 6.5. Effect of the Damk�ohler number
  • 6.6. Effects of the Knudsen number
  • 6.7. Upscaling
  • 7. Lattice Boltzmann model for water transport inside sub-nano graphene membranes
  • 7.1. Background
  • 7.2. Experimental details
  • 7.3. Augmented LB for water transport inside GO membranes
  • 7.4. Results
  • 7.5. Inside the flow structure
  • 7.6. Sub-nano tuning of graphene flakes' spacing in GO membrane : effects on permeability
  • 7.7. Some remarks on the slip length in nano-channel flows.