Numerical solutions of initial value problems using Mathematica /

The book contains a detailed account of numerical solutions of differential equations of elementary problems of physics using Euler and second order Runge-Kutta methods and Mathematica 6.0. The problems are motion under constant force (free fall), motion under Hooke's law force (simple harmonic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Chowdhury, Sujaul (συγγραφέας.)
Άλλοι συγγραφείς: Das, Ponkog Kumar (συγγραφέας.)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: San Rafael [Καλιφόρνια] : Morgan & Claypool Publishers, c2018.
Σειρά:IOP concise physics.
Θέματα:
Διαθέσιμο Online:http://iopscience.iop.org/book/978-1-6817-4976-1
Πίνακας περιεχομένων:
  • 1. Numerical solution of differential equations using Euler and second order Runge-Kutta methods
  • 1.1. Euler solution of differential equation
  • 1.2. Second order Runge-Kutta solution of the differential equation
  • 2. Motion under constant force : numerical solution of differential equations using Euler and second order Runge-Kutta methods using Mathematica
  • 2.1. Motion under constant force : the differential equations of motion
  • 2.2. Euler solution of free fall using Mathematica 6.0
  • 2.3. Runge-Kutta solution of free fall using Mathematica 6.0
  • 3. Simple harmonic oscillator : numerical solution of differential equations using the Euler and second order Runge-Kutta methods using Mathematica
  • 3.1. Motion under Hooke's law force : the differential equations of motion
  • 3.2. Euler solution of simple harmonic oscillation using Mathematica 6.0
  • 3.3. Runge-Kutta solution of simple harmonic oscillation using Mathematica 6.0
  • 4. Damped harmonic oscillator : numerical solution of differential equations using the Euler and second order Runge-Kutta methods using Mathematica
  • 4.1. Damped harmonic oscillator : the differential equations of motion
  • 4.2. Euler solution of damped harmonic oscillation using Mathematica 6.0
  • 4.3. Runge-Kutta solution of damped harmonic oscillation using Mathematica 6.0
  • 5. Radioactive decay : numerical solution of differential equations using Euler and second order Runge-Kutta methods using Mathematica
  • 5.1. The differential equation for radioactive decay
  • 5.2. Euler solution of radioactive decay law using Mathematica 6.0
  • 5.3. The Runge-Kutta solution of radioactive decay law using Mathematica 6.0
  • 6. Miscellaneous use of Mathematica in computational physics
  • 6.1. Dealing with complex numbers using Mathematica
  • 6.2. Solution of a system of linear equations using Mathematica
  • 6.3. Differentiation and integration using Mathematica
  • 6.4. Dealing with matrices using Mathematica.