Understanding stellar evolution /

Understanding Stellar Evolution' is based on a series of graduate-level courses taught at the University of Washington since 2004, and is written for physics and astronomy students and for anyone with a physics background who is interested in stars. It describes the structure and evolution of s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lamers, Henny J.G.L.M (συγγραφέας.)
Άλλοι συγγραφείς: Levesque, Emily M. (συγγραφέας.)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Bristol : IOP Publishing, c2017.
Σειρά:AAS-IOP Astronomy.
IOP astronomy.
Θέματα:
Διαθέσιμο Online:https://iopscience.iop.org/book/978-0-7503-1278-3
Πίνακας περιεχομένων:
  • 1. Stars : setting the stage
  • 1.1. The sun : our star
  • 1.2. The chemical composition of the sun and stars
  • 1.3. The structure of stars
  • 1.4. Stellar evolution in a nutshell
  • 1.5. Summary
  • 2. Observations of stellar parameters
  • 2.1. The distance of stars
  • 2.2. The mass of stars
  • 2.3. The luminosity of stars
  • 2.4. Magnitude, color, and temperature
  • 2.5. The mass-luminosity relation
  • 2.6. The Hertzsprung-Russell diagram and the color-magnitude diagram
  • 2.7. Nomenclature of regions in the HRD and CMD
  • 2.8. Summary
  • 3. Hydrostatic equilibrium and its consequences
  • 3.1. Conservation of mass : the mass continuity equation
  • 3.2. Hydrostatic equilibrium
  • 3.3. The virial theorem : a consequence of HE
  • 3.4. Summary
  • 4. Gas physics of stars
  • 4.1. Mean particle mass
  • 4.2. A general expression for the pressure
  • 4.3. Radiation pressure
  • 4.4. Pressure of an ideal gas
  • 4.5. Electron Degeneracy
  • 4.6. The equation of state (EoS) for electron gas
  • 4.7. Neutron degeneracy
  • 4.8. Polytropic gas
  • 4.9. Summary
  • 5. Opacities in stars
  • 5.1. The Rosseland-mean opacity
  • 5.2. Electron scattering : [sigma]e
  • 5.3. Free-free absorption : [kappa]ff
  • 5.4. Bound-freE absorption : [Kappa]BF
  • 5.5. BOUND-bound absorption : [kappa]bb
  • 5.6. Total Rosseland-mean opacity : [kappa]r
  • 5.7. The mean-free path of photons : l
  • 5.8. Summary
  • 6. Radiative energy transport
  • 6.1. Eddington's equation for radiative equilibrium
  • 6.2. Mass-luminosity relation for stars in HE and RE
  • 6.3. The Eddington limit : the maximum luminosity and the maximum mass
  • 6.4. Summary
  • 7. Convective energy transport
  • 7.1. The Schwarzschild criterion for convection
  • 7.2. Convection in a layer with a [mu]-gradient : Ledoux criterion
  • 7.3. The mixing length : how far does a convective cell rise before it dissolves
  • 7.4. The efficiency of convective energy transport
  • 7.5. The convective velocity
  • 7.6. Typical values of convective velocity and the timescale
  • 7.7. The super-adiabatic temperature gradient in convection zones
  • 7.8. Convective overshooting
  • 7.9. Convection : where and why?
  • 7.10. Chemical mixing by convection and its consequences
  • 7.11. Summary
  • 8. Nuclear fusion
  • 8.1. Reaction rates and energy production
  • 8.2. Thermonuclear reaction rates and the Gamow peak
  • 8.3. Abundance changes
  • 8.4. H[right arrow]He fusion
  • 8.5. He[right arrow]C fusion : the triple-gas process
  • 8.6. C-fusion, O-fusion, and Ne-photodisintegration
  • 8.7. Photodisintegration and the formation of heavy elements
  • 8.8. Summary of major nuclear reactions in stars
  • 8.9. Formation of heavy elements by neutron capture
  • 8.10. The minimum core mass for igniting fusion reactions
  • 8.11. Fusion phases of stars in the ([rho]c,Tc) plane
  • 8.12. Summary
  • 9. Stellar timescales
  • 9.1. The dynamical timescale
  • 9.2. The thermal timescale or Kelvin-Helmholtz timescale
  • 9.3. The nuclear timescale
  • 9.4. The convection timescale
  • 9.5. Comparison of timescales
  • 9.6. Summary
  • 10. Calculating stellar evolution
  • 10.1. Assumptions for computing stellar evolution
  • 10.2. The equations of stellar structure
  • 10.3. Boundary conditions
  • 10.4. Solving the structure equations
  • 10.5. Principles of stellar evolution calculations
  • 10.6. Summary
  • 11. Polytropic stars
  • 11.1. The structure of polytropic stars : P = K[rho][gamma]
  • 11.2. Stellar parameters of polytropic models
  • 11.3. The mass-radius relation of polytropic stars
  • 11.4. Summary
  • 12. Star formation
  • 12.1. The interstellar medium
  • 12.2. The Jeans mass for gravitational contraction
  • 12.3. The collapse of molecular clouds
  • 12.4. Fragmentation of molecular clouds
  • 12.5. The minimum mass of stars
  • 12.6. The end of the free-fall phase
  • 12.7. The contraction of a convective protostar : the descent along the Hayashi track
  • 12.8. The contraction of a radiative pre-main- sequence star : from the Hayashi track to the main sequence
  • 12.9. T Tauri stars and Herbig Ae-Be stars
  • 12.10. The destruction of lithium and deuterium
  • 12.11. Stars that do not reach H-fusion : brown dwarfs with M < 0.08 M[sun]
  • 12.12. The stellar initial mass function
  • 12.13. Star formation in the early universe
  • 12.14. Summary
  • 13. H-fusion in the core : the main-sequence phase
  • 13.1. The zero-age main sequence (ZAMS) : homology relations
  • 13.2. The influence of abundances on the ZAMS
  • 13.3. Evolution during the main-sequence phase
  • 13.4. The end of the MS phase : the TAMS
  • 13.5. The MS Lifetime
  • 13.6. Summary
  • 14. Principles of post-main-sequence evolution
  • 14.1. Isothermal cores : the Sch�onberg-Chandrasekhar limit
  • 14.2. The mirror principle of stars with shell fusion
  • 14.3. The Hayashi line of fully convective stars
  • 14.4. Summary
  • 15. Stellar winds and mass loss
  • 15.1. Types of winds
  • 15.2. Line-driven winds of hot stars
  • 15.3. Dust-driven winds of cool stars
  • 15.4. Mass-loss formulae for stellar evolution
  • 15.5. Summary
  • 16. Shell H-fusion in low- and intermediate-mass stars : red giants
  • 16.1. The start of the H-shell fusion
  • 16.2. The H-shell fusion phase of low-mass stars of 0.8-2M[sun]
  • 16.3. The H-shell fusion phase of intermediate-mass stars of 2-8 M[sun]
  • 16.4. The Mcore-L relation for red giants
  • 16.5. Metallicity dependence of the red giant branch
  • 16.6. Mass loss during the red giant phase
  • 16.7. Summary
  • 17. Helium fusion in low-mass stars : horizontal branch stars
  • 17.1. The ignition of helium fusion in low-mass stars
  • 17.2. Helium fusion in the core : horizontal branch stars
  • 17.3. Evolution on the horizontal branch
  • 17.4. The observed HB of globular clusters
  • 17.5. Summary
  • 18. Double shell fusion : asymptotic giant branch stars
  • 18.1. The start of the AGB phase
  • 18.2. The Mcore-L relation of AGB stars
  • 18.3. The second dredge-up at the beginning of the AGB phase
  • 18.4. The thermal pulsing AGB phase (TP-AGB)
  • 18.5. The third dredge-up
  • 18.6. Summary of the dredge-up phases
  • 18.7. The evolution speed during the AGB phase
  • 18.8. Mass loss and the end of the AGB evolution
  • 18.9. Summary
  • 19. Post-AGB evolution and planetary nebulae
  • 19.1. The post-AGB phase
  • 19.2. Born-again AGB stars
  • 19.3. Planetary nebulae
  • 19.4. Fading to the white dwarf phase
  • 19.5. Summary
  • 20. White dwarfs and neutron stars
  • 20.1. Stars that become white dwarfs
  • 20.2. The structure of white dwarfs
  • 20.3. The Chandrasekhar mass limit for white dwarfs
  • 20.4. The cooling of white dwarfs
  • 20.5. Neutron stars
  • 20.6. Summary
  • 21. Pulsating stars
  • 21.1. Classical Radial Pulsators
  • 21.2. Pulsation periods of classical radial pulsators
  • 21.3. The [kappa]-mechanism of classical radial pulsators
  • 21.4. An example : the pulsation of [delta] Cephei
  • 21.5. Nonradial pulsations and asteroseismology
  • 21.6. Summary
  • 22. Observations of massive stars : evidence for evolution with mass loss
  • 22.1. The observed upper limit in the HRD
  • 22.2. The atmospheric Eddington limit
  • 22.3. Luminous blue variables and the atmospheric Eddington limit
  • 22.4. Wolf-Rayet stars
  • 22.5. The dependence of massive star evolution on metallicity
  • 22.6. Summary
  • 23. Evolution of massive stars of 8-25M[sun]
  • 23.1. Predicted evolutionary tracks
  • 23.2. The internal evolution during the post-MS phase of stars of 8 to 25M[sun]
  • 23.3. Stellar pulsation during blue loops
  • 23.4. Summary
  • 24. The evolution of massive stars of 25-120M[sun] : dominated by mass loss
  • 24.1. The effect of mass loss during the main-sequence phase
  • 24.2. Predicted evolution tracks with mass loss
  • 24.3. The evolution of a 60M[sun] star with mass loss
  • 24.4. The Conti scenario
  • 24.5. Summary
  • 25. Rotation and stellar evolution
  • 25.1. The critical velocity of rotating stars
  • 25.2. The Von Zeipel effect
  • 25.3. nonspherical mass loss of rapidly rotating stars
  • 25.4. Mixing by meridional circulation
  • 25.5. The effect of rotation on the evolution of massive stars
  • 25.6. Homogeneous evolution
  • 25.7. Summary
  • 26. Late evolution stages of massive stars
  • 26.1. Late fusion phases
  • 26.2. The internal evolution
  • 26.3. Pre-supernovae
  • 26.4. Summary
  • 27. Supernovae
  • 27.1. Light curves of supernovae
  • 27.2. Core collapse
  • 27.3. The core collapse supernova explosion
  • 27.4. Energetics of core collapse supernovae of massive stars
  • 27.5. Observed types of supernovae
  • 27.6. The case of Supernova 1987A
  • 27.7. The remnants of stellar evolution
  • 27.8. Summary
  • 28. Principles of close binary evolution
  • 28.1. Periods and angular momentum
  • 28.2. Equipotential surfaces of binaries
  • 28.3. Contact phases
  • 28.4. Changes in period and separation during mass transfer
  • 28.5. Stable and runaway mass transfer
  • 28.6. Summary
  • 29. Close binaries : examples of evolution with mass transfer
  • 29.1. Algol systems : conservative case A mass transfer
  • 29.2. Massive interacting binaries : conservative case B mass transfer
  • 29.3. Common envelope stars : case C mass transfer
  • 29.4. The formation of high-mass X-ray binaries
  • 29.5. The formation of low-mass X-ray binaries
  • 29.6. Novae : WDs in semi-detached systems
  • 29.7. Summary
  • 30. Chemical yields : products of stellar evolution
  • 30.1. A summary of the evolution of single stars
  • 30.2. Chemical yields of single stars
  • 30.3. The main producers of various elements
  • 30.4. Summary
  • Appendices. A. Physical and astronomical constants
  • B. Stellar parameters
  • C. Solar model
  • D. Main sequence from ZAMS to TAMS
  • E. Acronyms.