Modeling and analysis of eclipsing binary stars : the theory and design principles of PHOEBE /
The fascinating and observationally spectacular world of binary stars is a vast and beautiful one that is a significant aspect of many astrophysical studies. Modeling and Analysis of Eclipsing Binary Stars gives a comprehensive analysis and description of the science behind eclipsing binaries. It al...
Κύριος συγγραφέας: | |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Bristol :
IOP Publishing,
c2018.
|
Σειρά: | AAS-IOP astronomy. Release 1.
|
Θέματα: | |
Διαθέσιμο Online: | https://iopscience.iop.org/book/978-0-7503-1287-5 |
Πίνακας περιεχομένων:
- 1. Introduction to the field
- 1.1. Why binaries are important
- 1.2. Why eclipsing binaries are even more important
- part I. Observations. 2. Observations and data acquisition
- 2.1. Timekeeping
- 2.2. Photometry
- 2.3. Spectroscopy
- 2.4. Interferometry
- 2.5. Astrometry
- 2.6. Polarimetry
- 2.7. Asteroseismology
- part II. Theoretical background. 3. Geometry and dynamics of binary stars
- 3.1. A quick look at the Roche model
- 3.2. Roche model generalization
- 3.3. Orbital properties of close binaries
- 3.4. Dynamical aspects of binary systems
- 4. Radiation : the basics
- 4.1. Intensity
- 4.2. Flux
- 4.3. Luminosity
- 4.4. Limb darkening
- 4.5. Computational efficiency
- 4.6. Relative units
- 4.7. Blackbody radiation
- 4.8. Putting it all together
- 5. Radiative properties of binary stars
- 5.1. Gravity darkening
- 5.2. Reflection effect
- 5.3. Stellar spots
- 5.4. Doppler boosting
- 5.5. Interstellar and atmospheric extinction
- 6. Advanced topics
- 6.1. Misaligned stellar rotation axes
- 6.2. Multiple systems
- 6.3. Granulation
- 6.4. Color indices and effective temperatures
- 6.5. Limitations
- part III. Modeling considerations. 7. Numerical model
- 7.1. Discretization of stellar surfaces
- 7.2. Dynamical aspects
- 7.3. Computation of local geometric quantities
- 7.4. Computation of local radiative quantities
- 7.5. Computation of aspect-dependent quantities
- 8. Approaches to solving the inverse problem
- 8.1. Local and global minima in the parameter hyperspace
- 8.2. Differential corrections
- 8.3. Powell's direction set method
- 8.4. Nelder & Mead's downhill simplex method
- 8.5. Adaptive simulated annealing
- 8.6. Formal errors of the fit
- 8.7. Handling degeneracies efficiently
- 8.8. Markov chain Monte Carlo samplers
- 8.9. Parameter constraints as degeneracy breakers
- 9. Conclusion.