Modeling and analysis of eclipsing binary stars : the theory and design principles of PHOEBE /

The fascinating and observationally spectacular world of binary stars is a vast and beautiful one that is a significant aspect of many astrophysical studies. Modeling and Analysis of Eclipsing Binary Stars gives a comprehensive analysis and description of the science behind eclipsing binaries. It al...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Prša, Andrej (συγγραφέας.)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Bristol : IOP Publishing, c2018.
Σειρά:AAS-IOP astronomy. Release 1.
Θέματα:
Διαθέσιμο Online:https://iopscience.iop.org/book/978-0-7503-1287-5
Πίνακας περιεχομένων:
  • 1. Introduction to the field
  • 1.1. Why binaries are important
  • 1.2. Why eclipsing binaries are even more important
  • part I. Observations. 2. Observations and data acquisition
  • 2.1. Timekeeping
  • 2.2. Photometry
  • 2.3. Spectroscopy
  • 2.4. Interferometry
  • 2.5. Astrometry
  • 2.6. Polarimetry
  • 2.7. Asteroseismology
  • part II. Theoretical background. 3. Geometry and dynamics of binary stars
  • 3.1. A quick look at the Roche model
  • 3.2. Roche model generalization
  • 3.3. Orbital properties of close binaries
  • 3.4. Dynamical aspects of binary systems
  • 4. Radiation : the basics
  • 4.1. Intensity
  • 4.2. Flux
  • 4.3. Luminosity
  • 4.4. Limb darkening
  • 4.5. Computational efficiency
  • 4.6. Relative units
  • 4.7. Blackbody radiation
  • 4.8. Putting it all together
  • 5. Radiative properties of binary stars
  • 5.1. Gravity darkening
  • 5.2. Reflection effect
  • 5.3. Stellar spots
  • 5.4. Doppler boosting
  • 5.5. Interstellar and atmospheric extinction
  • 6. Advanced topics
  • 6.1. Misaligned stellar rotation axes
  • 6.2. Multiple systems
  • 6.3. Granulation
  • 6.4. Color indices and effective temperatures
  • 6.5. Limitations
  • part III. Modeling considerations. 7. Numerical model
  • 7.1. Discretization of stellar surfaces
  • 7.2. Dynamical aspects
  • 7.3. Computation of local geometric quantities
  • 7.4. Computation of local radiative quantities
  • 7.5. Computation of aspect-dependent quantities
  • 8. Approaches to solving the inverse problem
  • 8.1. Local and global minima in the parameter hyperspace
  • 8.2. Differential corrections
  • 8.3. Powell's direction set method
  • 8.4. Nelder & Mead's downhill simplex method
  • 8.5. Adaptive simulated annealing
  • 8.6. Formal errors of the fit
  • 8.7. Handling degeneracies efficiently
  • 8.8. Markov chain Monte Carlo samplers
  • 8.9. Parameter constraints as degeneracy breakers
  • 9. Conclusion.