Gamma-ray bursts /

As the most powerful explosion that occurs in the universe, gamma-ray bursts (GRBs) are one of the most exciting topics being studied in astrophysics. Creating more energy than the Sun does in its entire lifetime, GRBs create a blaze of light that will outshine every other object visible in the sky,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Levan, Andrew J. (συγγραφέας.)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Bristol : IOP Publishing, c2018.
Σειρά:AAS-IOP astronomy. Release 1.
Θέματα:
Διαθέσιμο Online:https://iopscience.iop.org/book/978-0-7503-1502-9
LEADER 04725nam a2200421 i 4500
001 9780750315029
003 IOP
005 20210525065823.0
006 m eo d
007 cr cn |||m|||a
008 190116s2018 enka ob 000 0 eng d
999 |c 140242  |d 140242 
020 |a 9780750315029  |q ebook 
020 |a 9780750315012  |q mobi 
020 |z 9780750315005  |q print 
040 |a CaBNVSL  |b gre  |e AACR2  |c GR-PaULI  |d GR-PaULI 
082 0 4 |a 522.686 2  |2 23 
100 |a Levan, Andrew J.  |e συγγραφέας.  |9 174706 
245 1 0 |a Gamma-ray bursts /  |c Andrew Levan. 
260 |a Bristol :  |b IOP Publishing,  |c c2018. 
300 |a 1 ηλεκτρονική πηγή (ποικίλες σελιδαριθμήσεις) :  |b εικ. (μερ. έγχρ.). 
490 1 |a AAS-IOP astronomy. [release 1],  |x 2514-3433 
504 |a Περιλαμβάνει βιβλιογραφικές παραπομπές. 
505 0 |a 1. A historical primer -- 1.1. A lesson in serendipity -- 1.2. GRB phenomenology -- 1.3. The early years -- 1.4. Suggested models for GRB creation -- 1.5. Intensive efforts and large samples -- 1.6. The fireball shock model -- 1.7. The long-GRB afterglow revolution -- 1.8. Redshifts and host galaxies -- 1.9. The supernova connection -- 1.10. GRB energetics -- 1.11. The Neil Gehrels Swift era -- 1.12. New insights from fermi -- 1.13. Multimessenger astronomy -- 1.14. Summary 
505 8 |a 2. Prompt emission -- 2.1. Observational properties -- 2.2. Origin of the prompt emission -- 2.3. Summary 
505 8 |a 3. Afterglow emission -- 3.1. The first afterglow searches -- 3.2. X-ray afterglows -- 3.3. Optical afterglows -- 3.4. Radio/submillimeter afterglows -- 3.5. Emission processes -- 3.6. Evidence for relativistic beaming 
505 8 |a 4. Central engines -- 4.1. The requirement of a central engine -- 4.2. Black hole central engines -- 4.3. Magnetar central engines -- 4.4. Central engines in other astrophysical transients -- 4.5. Summary 
505 8 |a 5. Long-GRB progenitors -- 5.1. The GRB-supernova connection -- 5.2. Observational constraints on stellar masses and sizes -- 5.3. Other populations of long-duration GRBs -- 5.4. Low-luminosity GRBs -- 5.5. Extremely long gamma-ray transients -- 5.6. Constraints for GRB production -- 5.7. Binary or single? 
505 8 |a 6. Short-GRB progenitors -- 6.1. Introduction -- 6.2. Progenitor models -- 6.3. Prompt emission properties -- 6.4. Afterglow properties -- 6.5. Host galaxy properties -- 6.6. Locations -- 6.7. Redshifts and energetics -- 6.8. Radioactively driven transients -- 6.9. Gravitational-wave emission 
505 8 |a 7. GRBs as cosmological probes -- 7.1. A range of cosmological probes -- 7.2. Science from high-z GRB afterglows -- 7.3. GRBs beyond z [tilde operator] 5 -- 7.4. GRBs from population iii stars -- 7.5. The universal star formation rate -- 7.6. Cosmological parameters from GRBs -- 7.7. The GRB hubble diagram 
505 8 |a 8. Long-GRB host galaxies -- 8.1. Early observations -- 8.2. GRB hosts in the galaxy zoo -- 8.3. Basic properties of long-GRB hosts -- 8.4. Building meaningful samples of GRB hosts -- 8.5. GRBs hosts at optical and ir wavelengths -- 8.6. GRB hosts at submillimeter and radio wavelengths -- 8.7. GRB hosts as tools to probe progenitors -- 8.8. GRB hosts as tools to probe distant galaxies -- 8.9. Burst locations and environments -- 8.10. Comparative properties of GRB hosts with other core-collapse events 
505 8 |a 9. Multimessenger astronomy -- 9.1. From multiwavelength to multimessenger astronomy -- 9.2. Gravitational waves -- 9.3. Sources of gravitational-wave emission -- 9.4. Gravitational-wave horizons -- 9.5. Prospect for joint detections -- 9.6. Electromagnetic searches in black hole-black hole mergers -- 9.7. GW 170817 and GRB 170817a -- 9.8. Gravitational wave-electromagnetic detections : questions for the future -- 9.9. Neutrino emission -- 9.10. Ultra-high-energy cosmic rays -- 9.11. Summary 
505 8 |a 10. GRB astronomy : summary and future outlook -- 10.1. Challenges for the future -- 10.2. Possibilities for future GRB detection missions -- 10.3. The crucial role of follow-up -- 10.4. Summary. 
520 3 |a As the most powerful explosion that occurs in the universe, gamma-ray bursts (GRBs) are one of the most exciting topics being studied in astrophysics. Creating more energy than the Sun does in its entire lifetime, GRBs create a blaze of light that will outshine every other object visible in the sky, enabling us to measure galaxies that are several million years old. 
650 0 |a Ακτίνες γ  |9 75514 
830 0 |a AAS-IOP astronomy.  |p Release 1. 
856 4 0 |u https://iopscience.iop.org/book/978-0-7503-1502-9 
942 |2 ddc  |c ERS