Gamma-ray bursts /

As the most powerful explosion that occurs in the universe, gamma-ray bursts (GRBs) are one of the most exciting topics being studied in astrophysics. Creating more energy than the Sun does in its entire lifetime, GRBs create a blaze of light that will outshine every other object visible in the sky,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Levan, Andrew J. (συγγραφέας.)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Bristol : IOP Publishing, c2018.
Σειρά:AAS-IOP astronomy. Release 1.
Θέματα:
Διαθέσιμο Online:https://iopscience.iop.org/book/978-0-7503-1502-9
Πίνακας περιεχομένων:
  • 1. A historical primer
  • 1.1. A lesson in serendipity
  • 1.2. GRB phenomenology
  • 1.3. The early years
  • 1.4. Suggested models for GRB creation
  • 1.5. Intensive efforts and large samples
  • 1.6. The fireball shock model
  • 1.7. The long-GRB afterglow revolution
  • 1.8. Redshifts and host galaxies
  • 1.9. The supernova connection
  • 1.10. GRB energetics
  • 1.11. The Neil Gehrels Swift era
  • 1.12. New insights from fermi
  • 1.13. Multimessenger astronomy
  • 1.14. Summary
  • 2. Prompt emission
  • 2.1. Observational properties
  • 2.2. Origin of the prompt emission
  • 2.3. Summary
  • 3. Afterglow emission
  • 3.1. The first afterglow searches
  • 3.2. X-ray afterglows
  • 3.3. Optical afterglows
  • 3.4. Radio/submillimeter afterglows
  • 3.5. Emission processes
  • 3.6. Evidence for relativistic beaming
  • 4. Central engines
  • 4.1. The requirement of a central engine
  • 4.2. Black hole central engines
  • 4.3. Magnetar central engines
  • 4.4. Central engines in other astrophysical transients
  • 4.5. Summary
  • 5. Long-GRB progenitors
  • 5.1. The GRB-supernova connection
  • 5.2. Observational constraints on stellar masses and sizes
  • 5.3. Other populations of long-duration GRBs
  • 5.4. Low-luminosity GRBs
  • 5.5. Extremely long gamma-ray transients
  • 5.6. Constraints for GRB production
  • 5.7. Binary or single?
  • 6. Short-GRB progenitors
  • 6.1. Introduction
  • 6.2. Progenitor models
  • 6.3. Prompt emission properties
  • 6.4. Afterglow properties
  • 6.5. Host galaxy properties
  • 6.6. Locations
  • 6.7. Redshifts and energetics
  • 6.8. Radioactively driven transients
  • 6.9. Gravitational-wave emission
  • 7. GRBs as cosmological probes
  • 7.1. A range of cosmological probes
  • 7.2. Science from high-z GRB afterglows
  • 7.3. GRBs beyond z [tilde operator] 5
  • 7.4. GRBs from population iii stars
  • 7.5. The universal star formation rate
  • 7.6. Cosmological parameters from GRBs
  • 7.7. The GRB hubble diagram
  • 8. Long-GRB host galaxies
  • 8.1. Early observations
  • 8.2. GRB hosts in the galaxy zoo
  • 8.3. Basic properties of long-GRB hosts
  • 8.4. Building meaningful samples of GRB hosts
  • 8.5. GRBs hosts at optical and ir wavelengths
  • 8.6. GRB hosts at submillimeter and radio wavelengths
  • 8.7. GRB hosts as tools to probe progenitors
  • 8.8. GRB hosts as tools to probe distant galaxies
  • 8.9. Burst locations and environments
  • 8.10. Comparative properties of GRB hosts with other core-collapse events
  • 9. Multimessenger astronomy
  • 9.1. From multiwavelength to multimessenger astronomy
  • 9.2. Gravitational waves
  • 9.3. Sources of gravitational-wave emission
  • 9.4. Gravitational-wave horizons
  • 9.5. Prospect for joint detections
  • 9.6. Electromagnetic searches in black hole-black hole mergers
  • 9.7. GW 170817 and GRB 170817a
  • 9.8. Gravitational wave-electromagnetic detections : questions for the future
  • 9.9. Neutrino emission
  • 9.10. Ultra-high-energy cosmic rays
  • 9.11. Summary
  • 10. GRB astronomy : summary and future outlook
  • 10.1. Challenges for the future
  • 10.2. Possibilities for future GRB detection missions
  • 10.3. The crucial role of follow-up
  • 10.4. Summary.