Computer vision : algorithms and applications /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Szeliski, Richard, 1958- (συγγραφέας)
Μορφή: Βιβλίο
Γλώσσα:English
Έκδοση: London ; New York : Springer, c2011.
Σειρά:Texts in computer science
Θέματα:
Πίνακας περιεχομένων:
  • Introduction. What is computer vision? ; A brief history ; Book overview ; Sample syllabus ; Notation
  • Image formation. Geometric primitives and transformations ; Photometric image formation ; The digital camera
  • Image processing. Point operators ; Linear filtering ; More neighborhood operators ; Fourier transforms ; Pyramids and wavelets ; Geometric transformations ; Global optimization
  • Feature detection and matching. Points and patches ; Edges ; Lines
  • Segmentation. Active contours ; Split and merge ; Mean shift and mode finding ; Normalized cuts ; Graph cuts and energy-based methods
  • Feature-based alignment. 2D and 3D feature-based alignment ; Pose estimation ; Geometric intrinsic calibration
  • Structure from motion. Triangulation ; Two-frame structure from motion ; Factorization ; Bundle adjustment ; Constrained structure and motion
  • Dense motion estimation. Translational alignment ; Parametric motion ; Spline-based motion ; Optical flow ; Layered motion
  • Image stitching. Motion models ; Global alignment ; Compositing
  • Computational photography. Photometric calibration ; High dynamic range imaging ; Super-resolution and blur removal ; Image matting and compositing ; Texture analysis and synthesis
  • Stereo correspondence. Epipolar geometry ; Sparse correspondence ; Dense correspondence ; Local methods ; Global optimization ; Multi-view stereo
  • 3D reconstruction. Shape from X ; Active rangefinding ; Surface representations ; Point-base representations ; Volumetric representations ; Model-based reconstruction ; Recovering texture maps and albedos
  • Image-based rendering. View interpolation ; Layered depth images ; Light fields and Lumigraphs ; Environment mattes ; Video-base rendering
  • Recognition. Object detection ; Face recognition ; Instance recognition ; Category recognition ; Context and scene understanding ; Recognition databases and test sets.