Dilute nitride semiconductors

* This book contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field.<p>* It gives the reader easier access and better evaluation of future trends, Conveying important results and current ideas</p>* Includes a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Henini, Mohamed
Συγγραφή απο Οργανισμό/Αρχή: ScienceDirect (Online service)
Μορφή: Ηλεκτρονική πηγή Βιβλίο
Γλώσσα:English
Έκδοση: Amsterdam London Elsevier 2005
Θέματα:
Διαθέσιμο Online:An electronic book accessible through the World Wide Web; click for information
Πίνακας περιεχομένων:
  • Contents
  • Preface v
  • CHAPTER 1
  • MBE GROWTH AND CHARACTERIZATION OF LONG WAVELENGTH DILUTE NITRIDE IIIV ALLOYS
  • 1.1. Introduction
  • 1.2. MBE Growth of Dilute IIIV Nitrides
  • 1.3. Dilute Nitride Characterization
  • 1.4. Energy Band and Carrier Transport Properties
  • 1.5. Annealing and NIn Nearest Neighbor Effects
  • 1.6. Summary
  • Acknowledgements
  • References<P>
  • CHAPTER 2
  • EPITAXIAL GROWTH OF DILUTE NITRIDES BY METAL-ORGANIC VAPOUR PHASE EPITAXY
  • 2.1. Introduction
  • 2.2. Epitaxial Growth of GaInAsN-based Structures
  • 2.3. Long Wavelength GaAs-based Laser Performances
  • 2.4. Conclusion
  • Acknowledgements
  • References<P>
  • CHAPTER 3
  • THE CHEMICAL BEAM EPITAXY OF DILUTE NITRIDE ALLOY
  • SEMICONDUCTORS
  • 3.1. Introduction to Dilute Nitride Semiconductors
  • 3.2. The Chemical Beam Epitaxial/Metalorganic Molecular Beam Epitaxial
  • (CBE/MOMBE) Growth Process
  • 3.3. CBE of Dilute Nitride Semiconductors
  • 3.4. Fundamental Studies of GaNx As (12 x ) Band Structure
  • 3.5. The Compositions and Properties of Dilute Nitrides Grown by CBE
  • 3.6. CBE-grown Dilute Nitride Devices
  • 3.7. The Potential for Production CBE of Dilute Nitrides
  • 3.8. Conclusions
  • Acknowledgements
  • References <P>
  • CHAPTER 4
  • MOMBE GROWTH AND CHARACTERIZATION OF IIIV-N
  • COMPOUNDS AND APPLICATION TO InAs QUANTUM DOTS
  • 4.1. Introduction
  • 4.2. MOMBE Growth and Characterization of GaAsN
  • 4.3. Relation of In and N Incorporations in the Growth of GaInNAs
  • 4.4. Growth and Characterization of GaAsNSe New Alloy
  • 4.5. Application of GaAsN to InAs Quantum Dots
  • 4.6. Summary
  • Acknowledgements
  • References <P>
  • CHAPTER 5
  • RECENT PROGRESS IN DILUTE NITRIDE QUANTUM DOTS
  • 5.1. Self-organized Quantum Dots
  • 5.2. Dilute Nitride Quantum Dots
  • 5.3. Recent Experimental Progress in GaInNAS QDS
  • 5.4. Other Kinds of Dilute Nitride QDs
  • 5.5. Summary and Future Challenges in Dilute Nitride QDs
  • Acknowledgements
  • References<P>
  • CHAPTER 6
  • PHYSICS OF ISOELECTRONIC DOPANTS IN GaAs
  • 6.1. Nitrogen Isoelectronic Impurities
  • 6.2. The Failure of the Virtual Crystal Approximation
  • 6.3. Prevalent Theoretical Models on Dilute Nitrides
  • 6.4. Electroreflectance Study of GaAsN
  • 6.5. Resonant Raman Scattering Study of Conduction Band States
  • 6.6. Compatibility with other Experimental Results
  • 6.7. A Complementary Alloy: GaAsBi
  • 6.8. Summary
  • 6.9. Conclusion
  • References <P>
  • CHAPTER 7
  • MEASUREMENT OF CARRIER LOCALIZATION DEGREE, ELECTRON EFFECTIVE MASS, AND EXCITON SIZE IN In x Ga1 2 x As 1 2 y N y Alloys
  • 7.1. Introduction
  • 7.2. Experimental
  • 7.3. Single Carrier Localization in In x Ga1 2 x As 1 2 y N y
  • 7.4. Measurement of the Electron Effective Mass and Exciton Wave function Size
  • 7.5. Conclusions
  • Acknowledgements
  • References <P>
  • CHAPTER 8
  • PROBING THE UNUSUAL BAND STRUCTURE OF DILUTE Ga(AsN)QUANTUM WELLS BY MAGNETO-TUNNELLING SPECTROSCOPY AND OTHER TECHNIQUES
  • 8.1. Introduction
  • 8.2. Resonant Tunnelling Diodes Based on Dilute Nitrides
  • 8.3. Magneto-Tunnelling Spectroscopy to Probe the Conduction Band Structure of Dilute Nitrides
  • 8.4. Electronic Properties: From the Very Dilute Regime ( , 0.1%) to the Dilute Regime
  • 8.5. Conduction in Dilute Nitrides and Future Prospects
  • 8.6. Summary and Conclusions
  • Acknowledgements
  • References <P>
  • CHAPTER 9
  • PHOTO- AND ELECTRO-REFLECTANCE OF IIIV-N COMPOUNDS AND LOW DIMENSIONAL STRUCTURES
  • 9.1. Principles of Electromodulation in Electro- and Photo-reflectance Spectroscopy
  • 9.2. Band Structure of (Ga,In)(As,Sb,N) Bulk-like Layers
  • 9.3. (Ga,In)(As,Sb,N)-Based Quantum Well Structures
  • 9.4. The Influence of Post-grown Annealing on GaInNAs Structures
  • 9.5. Photoreflectance Investigation of the Exciton Binding Energy
  • 9.6. Manifestation of the Carrier Localization Effect in Photoreflectance Spectroscopy
  • References <P>
  • CHAPTER 10
  • BAND ANTICROSSING AND RELATED ELECTRONIC STRUCTURE IN III-N-V ALLOYS
  • 10.1. Introduction
  • 10.2. Band Anticrossing Model
  • 10.3. Experimental Evidence of Band Splitting and Anticrossing Characteristics
  • 10.4. Novel Electronic and Transport Properties of III-N-V Alloys
  • 10.5. Conclusions
  • Acknowledgements
  • References <P>
  • CHAPTER 11
  • A TIGHT-BINDING BASED ANALYSIS OF THE BAND ANTI-CROSSING MODEL AND ITS APPLICATION IN Ga(In)NAs ALLOYS
  • 11.1. Introduction
  • 11.2. Nitrogen Resonant States in Ordered GaNx As 1 2 x Structures
  • 11.3. Analytical Model for Quantum Well Confined State Energies and Dispersion
  • 11.4. Influence of Disorder on Nitrogen Resonant States, E 2 and Eώ in GaNx As 1 2 x
  • 11.5. Conduction Band Structure and Effective Mass in Disordered GaNx As 1 2 x
  • 11.6. Alloy Scattering and Mobility in Dilute Nitride Alloys
  • 11.7. Conclusions
  • Acknowledgements
  • References <P>
  • CHAPTER 12
  • ELECTRONIC STRUCTURE EVOLUTION OF DILUTE
  • IIIV NITRIDE ALLOYS
  • 12.1. Introduction
  • 12.2. Phenomenology of Dilute IIIV Nitrides
  • 12.3. Empirical Pseudopotential Methodology
  • 12.4. Electronic Structure Evolution of Dilute Nitrides
  • 12.5. Summary of Electronic Structure Evolution
  • 12.6. Phenomenology of Dilute Nitride Quaternaries
  • 12.7. Future Challenges of New Nitride Materials
  • 12.8. Conclusions
  • Acknowledgements
  • References <P>
  • CHAPTER 13
  • THEORY OF NITROGENHYDROGEN COMPLEXES IN N-CONTAINING IIIV ALLOYS
  • 13.1. Introduction
  • 13.2. Theoretical Methods
  • 13.3. NH Complexes in GaAsN Alloys
  • 13.4. Intrinsic N and H Impurities in GaP AND GaAs
  • 13.5. NH Complexes in InGaAsN
  • 13.6. NH Complexes in GaPN
  • 13.7. Conclusions
  • References <P>
  • CHAPTER 14
  • DISLOCATION-FREE IIIV-N ALLOY LAYERS ON Si SUBSTRATES AND THEIR DEVICE APPLICATIONS
  • 14.1. Introduction
  • 14.2. Dislocation Generation Mechanisms in Lattice-mismatched Heteroepitaxy
  • 14.3. Lattice-matched Heteroepitaxy of IIIV-N Alloys on IIIV Compound Semiconductors
  • 14.4. Growth of Dislocation-free IIIV-N Alloy Layers on Si Substrates
  • 14.5. Device Applications
  • 14.6. Summary
  • Acknowledgements
  • References <P>
  • CHAPTER 15
  • GaNAsSb ALLOY AND ITS POTENTIAL FOR DEVICE APPLICATIONS
  • 15.1. Introduction
  • 15.2. MBE of the GaNAsSb Alloy
  • 15.3. Bands
  • 15.4. Annealing Effect
  • 15.5. Quinary Alloy
  • 15.6. Long-wavelength GaAs-based Laser
  • 15.7. HBT
  • 15.8. Conclusions
  • Acknowledgements
  • References <P>
  • CHAPTER 16
  • A COMPARATIVE LOOK AT 1.3 m m InGaAsN-BASED VCSELs FOR FIBER-OPTICAL COMMUNICATION SYSTEMS
  • 16.1. Introduction: 0.85 m m versus 1.3 m m VCSELs
  • 16.2. Approaches to Achieve 1.3 m m VCSELs
  • 16.3. 1.3 m m VCSELs Based on InGaAsN
  • 16.4. Outlook
  • 16.5. Conclusion
  • Acknowledgements
  • References <P>
  • CHAPTER 17
  • LONG-WAVELENGTH DILUTE NITRIDEANTIMONIDE LASERS
  • 17.1. Introduction
  • 17.2. Epitaxial Growth Systems: MOVPE and MBE
  • 17.3. Ion Damage and Annealing Behavior
  • 17.4. GaInNAsSb Edge-emitting Lasers
  • 17.5. Spontaneous Emission Studies
  • 17.6. GaInNAsSb VCSELs
  • 17.7. High Power Lasers Based on GaInNAs(Sb)
  • 17.8. Relative Intensity Noise
  • 17.9. GaInNAsSb Electroabsorption Modulators and Saturable Absorbers
  • 17.10. Laser Reliability
  • 17.11. Summary
  • Acknowledgements
  • References <P>
  • CHAPTER 18
  • APPLICATION OF DILUTE NITRIDE MATERIALS TO HETEROJUNCTION BIPOLAR TRANSISTORS
  • 18.1. Introduction
  • 18.2. Design Considerations for GaInNAs-based HBTs
  • 18.3. Material Growth and Device Processing
  • 18.4. GaInNAs HBT Results
  • 18.5. Circuit Applications for GaInNAs HBTs
  • 18.6. Future Outlook
  • Acknowledgements
  • References
  • Index