|
|
|
|
LEADER |
04150nam a2200301 u 4500 |
001 |
10107133 |
003 |
upatras |
005 |
20210419124203.0 |
008 |
050609s gre |
020 |
|
|
|a 1 4020 7031 4
|
040 |
|
|
|a Ινστιτούτο Τεχνολογίας Υπολογιστών
|c Ινστιτούτο Τεχνολογίας Υπολογιστών
|
040 |
|
|
|a XX-XxUND
|c Ινστιτούτο Τεχνολογίας Υπολογιστών
|
082 |
1 |
4 |
|a 621.382 2
|2 21η
|
245 |
1 |
0 |
|a Residue Number Systems
|b Algorithms and Architectures
|c P.V. Ananda Mohan
|
260 |
|
|
|a Boston
|b Kluwer Academic Publishers
|c c2002
|
300 |
|
|
|a xiii, 254p.
|b fig.,tabl.
|
490 |
1 |
|
|a The Kluwer International Series in Engineering and Computer Science
|
504 |
|
|
|a References : pp. 235 - 251, index : pp. 253 - 254
|
505 |
1 |
|
|a Preface
|a 1. Introduction
|a 1.1 Historical survey
|a 1.2 Basic definitions of PNS
|a 1.3 Addition operation in RNS
|a 1.4 Conclusion
|a 2. Forward and Reverse Converters for General Moduli Set
|a 2.1 Introduction
|a 2.2 Mixed Radix Conversion based techniques
|a 2.3 CRT based conversion techniques
|a 2.4 Binary to RNS conversion techniques
|a 2.5 Conclusion
|a 3. Forward and Reverse Converters for General Moduli Set {2k-1,2k, 2k+1}
|a 3.1 Introduction
|a 3.2 Forward conversion architectures
|a 3.3 Reverse converters for the moduli set {2k - 1, 2k, 2k + 1}
|a 3.4 Forward and Reverse converters for the moduli set {2k, 2k - 1, 2k-1 -1}
|a 3.5 Forward and reverse converters for the moduli sets {2n =1, 2n, 2n -1}
|a 3.6 Conclusion
|a 4. Multipliers for RNS
|a 4.1 Introduction
|a 4.2 Multipliers based on index calculus
|a 4.3 Quarter Square multipliers
|a 4.4 Taylor's multipliers
|a 4.5 Multipliers with in - built scaling
|a 4.6 Razavi and battelini architectures using periodic properties of residues
|a 4.7 Hiasat's Modulo multipliers
|a 4.8 Elleithy and Bayoumi modulo multiplication technique
|a 4.9 Brickell's algorithm based multipliers and extensions
|a 4.10 Stouraitis et al architectures for (A.X + B) mod mi realization
|a 4.11 Multiplication using Redundant Number system
|a 4.12 Conclusion
|a 5. Base extension, scaling and division techniques
|a 5.1 Introduction
|a 5.2 Base extension and scaling techniques
|a 5.3 Division in residue number systems
|a 5.4 Scaling in the Moduli set {2n - 1, 2n, 2n +1}
|a 6. Error detection and Correction in RNS
|a 6.1 Introduction
|a 6.2 Szabo and Tanaka technique for Error detection and Correction
|a 6.3 Mendelbaum's Error correction technique
|a 6.4 Jenkins's Error correction techniques
|a 6.5 Ramachandran's Error correction technique
|a 6.6 Su and Lo unified technique for scaling and error correction
|a 6.7 Orto et al technique for error correction and detection using only one redundant modulus
|a 6.8 Conclusion
|a 7. Quadratic Residue Number Systems
|a 7.1 Introduction
|a 7.2 Basic operations in QRNS
|a 7.3 Modified quadratic residue number systems
|a 7.4 Jenkins and Krogmeier implementations
|a 7.5 Taylor's single modulus ALU for QRNS
|a 7.6 Conclusion
|a 8. Applications of Residue Number Systems
|a 8.1 Introduction
|a 8.2 Digital Analog Converters
|a 8.3 FIR Filters
|a 8.4 Recursive RNS filter implementation
|a 8.5 Digital frequency synthesis using RNS
|a 8.6 Multiple Valued Logic Based RNS designs
|a 8.7 Paliouras and Stouraitis architectures using moduli of the from rn
|a 8.8 Taheri, Jullien and Miller technique of High-speed computation in rings using systolic Architectures
|a 8.9 RNS based implementation of FFT structures
|a 8.10 Optimum Symmetric Residue Number System
|a 8.11 Conclusion
|a 9. References
|a Index
|
650 |
|
4 |
|a Επεξεργασία σημάτων
|x Ψηφιακές τεχνικές
|9 15746
|
650 |
|
4 |
|a COMPUTER ARCHITECTURE
|9 24451
|
650 |
|
4 |
|a ALGORITHMS
|9 24371
|
700 |
1 |
|
|a MOHAN, ANANDA P. V.
|4 aut
|9 128029
|
760 |
0 |
|
|a Kluwer International Series in Engineering and Computer Science
|
852 |
|
|
|a GR-PaULI
|b ΠΑΤΡΑ
|b ΤΜΗΥΠ
|h 621.382 2
|t 1
|
942 |
|
|
|2 ddc
|
952 |
|
|
|0 0
|1 0
|2 ddc
|4 0
|6 621_382000000000000_2
|7 0
|8 NFIC
|9 142652
|a LISP
|b LISP
|c ALFe
|d 2016-04-24
|l 0
|o 621.382 2
|p 025000283872
|r 2016-04-24 00:00:00
|t 1
|w 2016-04-24
|y BK15
|x Μεταφορά από Τμ. Μηχανικών ΗΥ & Πληροφορικής
|
999 |
|
|
|c 93275
|d 93275
|