Residue Number Systems Algorithms and Architectures

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: MOHAN, ANANDA P. V. (Συγγραφέας)
Μορφή: Βιβλίο
Γλώσσα:Greek
Έκδοση: Boston Kluwer Academic Publishers c2002
Σειρά:The Kluwer International Series in Engineering and Computer Science
Θέματα:
LEADER 04150nam a2200301 u 4500
001 10107133
003 upatras
005 20210419124203.0
008 050609s gre
020 |a 1 4020 7031 4 
040 |a Ινστιτούτο Τεχνολογίας Υπολογιστών  |c Ινστιτούτο Τεχνολογίας Υπολογιστών 
040 |a XX-XxUND  |c Ινστιτούτο Τεχνολογίας Υπολογιστών 
082 1 4 |a 621.382 2  |2 21η 
245 1 0 |a Residue Number Systems  |b Algorithms and Architectures  |c P.V. Ananda Mohan 
260 |a Boston  |b Kluwer Academic Publishers  |c c2002 
300 |a xiii, 254p.  |b fig.,tabl. 
490 1 |a The Kluwer International Series in Engineering and Computer Science 
504 |a References : pp. 235 - 251, index : pp. 253 - 254 
505 1 |a Preface  |a 1. Introduction  |a 1.1 Historical survey  |a 1.2 Basic definitions of PNS  |a 1.3 Addition operation in RNS  |a 1.4 Conclusion  |a 2. Forward and Reverse Converters for General Moduli Set  |a 2.1 Introduction  |a 2.2 Mixed Radix Conversion based techniques  |a 2.3 CRT based conversion techniques  |a 2.4 Binary to RNS conversion techniques  |a 2.5 Conclusion  |a 3. Forward and Reverse Converters for General Moduli Set {2k-1,2k, 2k+1}  |a 3.1 Introduction  |a 3.2 Forward conversion architectures  |a 3.3 Reverse converters for the moduli set {2k - 1, 2k, 2k + 1}  |a 3.4 Forward and Reverse converters for the moduli set {2k, 2k - 1, 2k-1 -1}  |a 3.5 Forward and reverse converters for the moduli sets {2n =1, 2n, 2n -1}  |a 3.6 Conclusion  |a 4. Multipliers for RNS  |a 4.1 Introduction  |a 4.2 Multipliers based on index calculus  |a 4.3 Quarter Square multipliers  |a 4.4 Taylor's multipliers  |a 4.5 Multipliers with in - built scaling  |a 4.6 Razavi and battelini architectures using periodic properties of residues  |a 4.7 Hiasat's Modulo multipliers  |a 4.8 Elleithy and Bayoumi modulo multiplication technique  |a 4.9 Brickell's algorithm based multipliers and extensions  |a 4.10 Stouraitis et al architectures for (A.X + B) mod mi realization  |a 4.11 Multiplication using Redundant Number system  |a 4.12 Conclusion  |a 5. Base extension, scaling and division techniques  |a 5.1 Introduction  |a 5.2 Base extension and scaling techniques  |a 5.3 Division in residue number systems  |a 5.4 Scaling in the Moduli set {2n - 1, 2n, 2n +1}  |a 6. Error detection and Correction in RNS  |a 6.1 Introduction  |a 6.2 Szabo and Tanaka technique for Error detection and Correction  |a 6.3 Mendelbaum's Error correction technique  |a 6.4 Jenkins's Error correction techniques  |a 6.5 Ramachandran's Error correction technique  |a 6.6 Su and Lo unified technique for scaling and error correction  |a 6.7 Orto et al technique for error correction and detection using only one redundant modulus  |a 6.8 Conclusion  |a 7. Quadratic Residue Number Systems  |a 7.1 Introduction  |a 7.2 Basic operations in QRNS  |a 7.3 Modified quadratic residue number systems  |a 7.4 Jenkins and Krogmeier implementations  |a 7.5 Taylor's single modulus ALU for QRNS  |a 7.6 Conclusion  |a 8. Applications of Residue Number Systems  |a 8.1 Introduction  |a 8.2 Digital Analog Converters  |a 8.3 FIR Filters  |a 8.4 Recursive RNS filter implementation  |a 8.5 Digital frequency synthesis using RNS  |a 8.6 Multiple Valued Logic Based RNS designs  |a 8.7 Paliouras and Stouraitis architectures using moduli of the from rn  |a 8.8 Taheri, Jullien and Miller technique of High-speed computation in rings using systolic Architectures  |a 8.9 RNS based implementation of FFT structures  |a 8.10 Optimum Symmetric Residue Number System  |a 8.11 Conclusion  |a 9. References  |a Index 
650 4 |a Επεξεργασία σημάτων   |x Ψηφιακές τεχνικές   |9 15746 
650 4 |a COMPUTER ARCHITECTURE  |9 24451 
650 4 |a ALGORITHMS  |9 24371 
700 1 |a MOHAN, ANANDA P. V.  |4 aut  |9 128029 
760 0 |a Kluwer International Series in Engineering and Computer Science 
852 |a GR-PaULI  |b ΠΑΤΡΑ  |b ΤΜΗΥΠ  |h 621.382 2  |t 1 
942 |2 ddc 
952 |0 0  |1 0  |2 ddc  |4 0  |6 621_382000000000000_2  |7 0  |8 NFIC  |9 142652  |a LISP  |b LISP  |c ALFe  |d 2016-04-24  |l 0  |o 621.382 2  |p 025000283872  |r 2016-04-24 00:00:00  |t 1  |w 2016-04-24  |y BK15  |x Μεταφορά από Τμ. Μηχανικών ΗΥ & Πληροφορικής 
999 |c 93275  |d 93275