Elliptic Cohomology

Elliptic cohomology is an extremely beautiful theory with both geometric and arithmetic aspects. The former is explained by the fact that the theory is a quotient of oriented cobordism localised away from 2, the latter by the fact that the coefficients coincide with a ring of modular forms. The aim...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Thomas, Charles B. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 1999.
Σειρά:The University Series in Mathematics
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02445nam a22004935i 4500
001 978-0-306-46969-5
003 DE-He213
005 20151204164813.0
007 cr nn 008mamaa
008 100301s1999 xxu| s |||| 0|eng d
020 |a 9780306469695  |9 978-0-306-46969-5 
024 7 |a 10.1007/b115001  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Thomas, Charles B.  |e author. 
245 1 0 |a Elliptic Cohomology  |h [electronic resource] /  |c by Charles B. Thomas. 
264 1 |a Boston, MA :  |b Springer US,  |c 1999. 
300 |a XII, 200 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The University Series in Mathematics 
505 0 |a Elliptic Genera -- Cohomology Theory Ell*(X) -- Work of M. Hopkins, N. Kuhn, and D. Ravenel -- Mathieu Groups -- Cohomology of Certain Simple Groups -- Ell*(BG) — Algebraic Approach -- Completion Theorems -- Elliptic Objects -- Variants of Elliptic Cohomology -- K3-Cohomology. 
520 |a Elliptic cohomology is an extremely beautiful theory with both geometric and arithmetic aspects. The former is explained by the fact that the theory is a quotient of oriented cobordism localised away from 2, the latter by the fact that the coefficients coincide with a ring of modular forms. The aim of the book is to construct this cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from `Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG). Concluding chapters also discuss variants, generalisations and potential applications. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Number theory. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Number Theory. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780306460975 
830 0 |a The University Series in Mathematics 
856 4 0 |u http://dx.doi.org/10.1007/b115001  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)