Knowledge Discovery for Business Information Systems

Current database technology and computer hardware allow us to gather, store, access, and manipulate massive volumes of raw data in an efficient and inexpensive manner. In addition, the amount of data collected and warehoused in all industries is growing every year at a phenomenal rate. Nevertheless,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Abramowicz, Witold (Επιμελητής έκδοσης), Zurada, Jozef (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2002.
Σειρά:The International Series in Engineering and Computer Science, 600
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04423nam a22005295i 4500
001 978-0-306-46991-6
003 DE-He213
005 20151204181758.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 |a 9780306469916  |9 978-0-306-46991-6 
024 7 |a 10.1007/b116447  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D35 
072 7 |a UMB  |2 bicssc 
072 7 |a URY  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 005.74  |2 23 
245 1 0 |a Knowledge Discovery for Business Information Systems  |h [electronic resource] /  |c edited by Witold Abramowicz, Jozef Zurada. 
264 1 |a Boston, MA :  |b Springer US,  |c 2002. 
300 |a XVIII, 432 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The International Series in Engineering and Computer Science,  |x 0893-3405 ;  |v 600 
505 0 |a Information Filters Supplying Data Warehouses with Benchmarking Information -- Parallel Mining of Association Rules -- Unsupervised Feature Ranking and Selection -- Approaches to Concept Based Exploration of Information Resources -- Hybrid Methodology of Knowledge Discovery for Business Information -- Fuzzy Linguistic Summaries of Databases for an Efficient Business Data Analysis and Decision Support -- Integrating Data Sources Using a Standardized Global Dictionary -- Maintenance of Discovered Association Rules -- Multidimensional Business Process Analysis with the Process Warehouse -- Amalgamation of Statistics and Data Mining Techniques: Explorations in Customer Lifetime Value Modeling -- Robust Business Intelligence Solutions -- The Role of Granular Information in Knowledge Discovery in Databases -- Dealing with Dimensions in Data Warehousing -- Enhancing the KDD Process in the Relational Database Mining Framework by Quantitative Evaluation of Association Rules -- Speeding up Hypothesis Development -- Sequence Mining in Dynamic and Interactive Environments -- Investigation of Artificial Neural Networks for Classifying Levels of Financial Distress of Firms: The Case of an Unbalanced Training Sample. 
520 |a Current database technology and computer hardware allow us to gather, store, access, and manipulate massive volumes of raw data in an efficient and inexpensive manner. In addition, the amount of data collected and warehoused in all industries is growing every year at a phenomenal rate. Nevertheless, our ability to discover critical, non-obvious nuggets of useful information in data that could influence or help in the decision making process, is still limited. Knowledge discovery (KDD) and Data Mining (DM) is a new, multidisciplinary field that focuses on the overall process of information discovery from large volumes of data. The field combines database concepts and theory, machine learning, pattern recognition, statistics, artificial intelligence, uncertainty management, and high-performance computing. To remain competitive, businesses must apply data mining techniques such as classification, prediction, and clustering using tools such as neural networks, fuzzy logic, and decision trees to facilitate making strategic decisions on a daily basis. Knowledge Discovery for Business Information Systems contains a collection of 16 high quality articles written by experts in the KDD and DM field from the following countries: Austria, Australia, Bulgaria, Canada, China (Hong Kong), Estonia, Denmark, Germany, Italy, Poland, Singapore and USA. 
650 0 |a Computer science. 
650 0 |a Information technology. 
650 0 |a Business  |x Data processing. 
650 0 |a Data structures (Computer science). 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Structures, Cryptology and Information Theory. 
650 2 4 |a IT in Business. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Abramowicz, Witold.  |e editor. 
700 1 |a Zurada, Jozef.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780792372431 
830 0 |a The International Series in Engineering and Computer Science,  |x 0893-3405 ;  |v 600 
856 4 0 |u http://dx.doi.org/10.1007/b116447  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)