Bayesian Approach to Image Interpretation

Bayesian Approach to Image Interpretation will interest anyone working in image interpretation. It is complete in itself and includes background material. This makes it useful for a novice as well as for an expert. It reviews some of the existing probabilistic methods for image interpretation and pr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kopparapu, Sunil K. (Συγγραφέας), Desai, Uday B. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2002.
Σειρά:The International Series in Engineering and Computer Science, 616
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03531nam a22005655i 4500
001 978-0-306-46996-1
003 DE-He213
005 20151103125517.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 |a 9780306469961  |9 978-0-306-46996-1 
024 7 |a 10.1007/b117231  |2 doi 
040 |d GrThAP 
050 4 |a TA1637-1638 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
100 1 |a Kopparapu, Sunil K.  |e author. 
245 1 0 |a Bayesian Approach to Image Interpretation  |h [electronic resource] /  |c by Sunil K. Kopparapu, Uday B. Desai. 
264 1 |a Boston, MA :  |b Springer US,  |c 2002. 
300 |a XV, 127 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The International Series in Engineering and Computer Science,  |x 0893-3405 ;  |v 616 
505 0 |a Overview -- Background -- MRF Framework For Image Interpretation -- Bayesian Net Approach to Image Interpretation -- Joint Segmentation and Image Interpretation -- Conclusions. 
520 |a Bayesian Approach to Image Interpretation will interest anyone working in image interpretation. It is complete in itself and includes background material. This makes it useful for a novice as well as for an expert. It reviews some of the existing probabilistic methods for image interpretation and presents some new results. Additionally, there is extensive bibliography covering references in varied areas. For a researcher in this field, the material on synergistic integration of segmentation and interpretation modules and the Bayesian approach to image interpretation will be beneficial. For a practicing engineer, the procedure for generating knowledge base, selecting initial temperature for the simulated annealing algorithm, and some implementation issues will be valuable. New ideas introduced in the book include: New approach to image interpretation using synergism between the segmentation and the interpretation modules. A new segmentation algorithm based on multiresolution analysis. Novel use of the Bayesian networks (causal networks) for image interpretation. Emphasis on making the interpretation approach less dependent on the knowledge base and hence more reliable by modeling the knowledge base in a probabilistic framework. Useful in both the academic and industrial research worlds, Bayesian Approach to Image Interpretation may also be used as a textbook for a semester course in computer vision or pattern recognition. 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Computer graphics. 
650 0 |a Image processing. 
650 1 4 |a Computer Science. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Computer Graphics. 
650 2 4 |a Computer Communication Networks. 
700 1 |a Desai, Uday B.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780792373728 
830 0 |a The International Series in Engineering and Computer Science,  |x 0893-3405 ;  |v 616 
856 4 0 |u http://dx.doi.org/10.1007/b117231  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)