Data Mining in Finance Advances in Relational and Hybrid Methods /

Data Mining in Finance presents a comprehensive overview of major algorithmic approaches to predictive data mining, including statistical, neural networks, ruled-based, decision-tree, and fuzzy-logic methods, and then examines the suitability of these approaches to financial data mining. The book fo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kovalerchuk, Boris (Συγγραφέας), Vityaev, Evgenii (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2002.
Σειρά:The International Series in Engineering and Computer Science, 547
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • The scope and methods of the study
  • Numerical Data Mining Models and Financial Applications
  • Rule-Based and Hybrid Financial Data Mining
  • Relational Data Mining (RDM)
  • Financial Applications of Relational Data Mining
  • Comparison of Performance of RDM and other methods in financial applications
  • Fuzzy logic approach and its financial applications.