Data Mining in Finance Advances in Relational and Hybrid Methods /
Data Mining in Finance presents a comprehensive overview of major algorithmic approaches to predictive data mining, including statistical, neural networks, ruled-based, decision-tree, and fuzzy-logic methods, and then examines the suitability of these approaches to financial data mining. The book fo...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Boston, MA :
Springer US,
2002.
|
Σειρά: | The International Series in Engineering and Computer Science,
547 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- The scope and methods of the study
- Numerical Data Mining Models and Financial Applications
- Rule-Based and Hybrid Financial Data Mining
- Relational Data Mining (RDM)
- Financial Applications of Relational Data Mining
- Comparison of Performance of RDM and other methods in financial applications
- Fuzzy logic approach and its financial applications.