Stochastic and Global Optimization

In the paper we propose a model of tax incentives optimization for inve- ment projects with a help of the mechanism of accelerated depreciation. Unlike the tax holidays which influence on effective income tax rate, accelerated - preciation affects on taxable income. In modern economic practice the s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Dzemyda, Gintautas (Επιμελητής έκδοσης), Šaltenis, Vydūnas (Επιμελητής έκδοσης), Žilinskas, Antanas (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2002.
Σειρά:Nonconvex Optimization and Its Applications, 59
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04309nam a22005535i 4500
001 978-0-306-47648-8
003 DE-He213
005 20151204161345.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 |a 9780306476488  |9 978-0-306-47648-8 
024 7 |a 10.1007/b130735  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
245 1 0 |a Stochastic and Global Optimization  |h [electronic resource] /  |c edited by Gintautas Dzemyda, Vydūnas Šaltenis, Antanas Žilinskas. 
264 1 |a Boston, MA :  |b Springer US,  |c 2002. 
300 |a XI, 237 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Nonconvex Optimization and Its Applications,  |x 1571-568X ;  |v 59 
505 0 |a Topographical Differential Evolution Using Pre-calculated Differentials -- Optimal Tax Depreciation in Stochastic Investment Model -- Global Optimisation of Chemical Process Flowsheets -- One-dimensional Global Optimization Based on Statistical Models -- Animated Visual Analysis of Extremal Problems -- Test Problems for Lipschitz Univariate Global Optimization with Multiextremal Constraints -- Numerical Techniques in Applied Multistage Stochastic Programming -- On the Efficiency and Effectiveness of Controlled Random Search -- Discrete Backtracking Adaptive Search for Global Optimization -- Parallel Branch-and-bound Attraction Based Methods for Global Optimzation -- On Solution of Stochastic Linear Programs by Discretization Methods -- The Structure of Multivariate Models and the Range of Definition -- Optimality Criteria for Investment Projects Under Uncertainty. 
520 |a In the paper we propose a model of tax incentives optimization for inve- ment projects with a help of the mechanism of accelerated depreciation. Unlike the tax holidays which influence on effective income tax rate, accelerated - preciation affects on taxable income. In modern economic practice the state actively use for an attraction of - vestment into the creation of new enterprises such mechanisms as accelerated depreciation and tax holidays. The problem under our consideration is the following. Assume that the state (region) is interested in realization of a certain investment project, for ex- ple, the creation of a new enterprise. In order to attract a potential investor the state decides to use a mechanism of accelerated tax depreciation. The foll- ing question arise. What is a reasonable principle for choosing depreciation rate? From the state’s point of view the future investor’s behavior will be rat- nal. It means that while looking at economic environment the investor choose such a moment for investment which maximizes his expected net present value (NPV) from the given project. For this case both criteria and “investment rule” depend on proposed (by the state) depreciation policy. For the simplicity we will suppose that the purpose of the state for a given project is a maximi- tion of a discounted tax payments into the budget from the enterprise after its creation. Of course, these payments depend on the moment of investor’s entry and, therefore, on the depreciation policy established by the state. 
650 0 |a Mathematics. 
650 0 |a Computers. 
650 0 |a System theory. 
650 0 |a Mathematical optimization. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Statistics, general. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 |a Dzemyda, Gintautas.  |e editor. 
700 1 |a Šaltenis, Vydūnas.  |e editor. 
700 1 |a Žilinskas, Antanas.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402004841 
830 0 |a Nonconvex Optimization and Its Applications,  |x 1571-568X ;  |v 59 
856 4 0 |u http://dx.doi.org/10.1007/b130735  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)