Evolutionary Optimization

Evolutionary computation techniques have attracted increasing att- tions in recent years for solving complex optimization problems. They are more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. E- lutionary computation techniques...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Sarker, Ruhul (Συγγραφέας), Mohammadian, Masoud (Συγγραφέας), Yao, Xin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2002.
Σειρά:International Series in Operations Research & Management Science, 48
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04632nam a22005775i 4500
001 978-0-306-48041-6
003 DE-He213
005 20151204191606.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 |a 9780306480416  |9 978-0-306-48041-6 
024 7 |a 10.1007/b101816  |2 doi 
040 |d GrThAP 
050 4 |a HD28-70 
072 7 |a KJC  |2 bicssc 
072 7 |a BUS041000  |2 bisacsh 
082 0 4 |a 658.4092  |2 23 
100 1 |a Sarker, Ruhul.  |e author. 
245 1 0 |a Evolutionary Optimization  |h [electronic resource] /  |c by Ruhul Sarker, Masoud Mohammadian, Xin Yao. 
264 1 |a Boston, MA :  |b Springer US,  |c 2002. 
300 |a XIV, 418 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 48 
505 0 |a Conventional Optimization Techniques -- Evolutionary Computation -- Single Objective Optimization -- Evolutionary Algorithms and Constrained Optimization -- Constrained Evolutionary Optimization -- Multi-Objective Optimization -- Evolutionary Multi-Objective Optimization: A Critical Review -- Multi-Objective Evolutionary Algorithms for Engineering Shape Design -- Assessment Methodologies for Multiobjective Evolutionary Algorithms -- Hybrid Algorithms -- Utilizing Hybrid Genetic Algorithms -- Using Evolutionary Algorithms to Solve Problems by Combining Choices of Heuristics -- Constrained Genetic Algorithms and Their Applications in Nonlinear Constrained Optimization -- Parameter Selection in EAs -- Parameter Selection -- Application of EAs to Practical Problems -- Design of Production Facilities Using Evolutionary Computing -- Virtual Population and Acceleration Techniques for Evolutionary Power Flow Calculation in Power Systems -- Application of EAs to Theoretical Problems -- Methods for the Analysis of Evolutionary Algorithms on Pseudo-Boolean Functions -- A Genetic Algorithm Heuristic for Finite Horizon Partially Observed Markov Decision Problems -- Using Genetic Algorithms to Find Good K-Tree Subgraphs. 
520 |a Evolutionary computation techniques have attracted increasing att- tions in recent years for solving complex optimization problems. They are more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. E- lutionary computation techniques can deal with complex optimization problems better than traditional optimization techniques. However, most papers on the application of evolutionary computation techniques to Operations Research /Management Science (OR/MS) problems have scattered around in different journals and conference proceedings. They also tend to focus on a very special and narrow topic. It is the right time that an archival book series publishes a special volume which - cludes critical reviews of the state-of-art of those evolutionary com- tation techniques which have been found particularly useful for OR/MS problems, and a collection of papers which represent the latest devel- ment in tackling various OR/MS problems by evolutionary computation techniques. This special volume of the book series on Evolutionary - timization aims at filling in this gap in the current literature. The special volume consists of invited papers written by leading - searchers in the field. All papers were peer reviewed by at least two recognised reviewers. The book covers the foundation as well as the practical side of evolutionary optimization. 
650 0 |a Business. 
650 0 |a Leadership. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 1 4 |a Business and Management. 
650 2 4 |a Business Strategy/Leadership. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Optimization. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Mohammadian, Masoud.  |e author. 
700 1 |a Yao, Xin.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780792376545 
830 0 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 48 
856 4 0 |u http://dx.doi.org/10.1007/b101816  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBE 
912 |a ZDB-2-BAE 
950 |a Business and Economics (Springer-11643)