Hierarchical Methods Undulative Electrodynamical Systems, Volume 2 /

The book consists of two Volumes. The first (the preceding volume) is devoted to the general nonlinear theory of the hierarchical dynamic oscillative–wave systems. This theory has been called the theory of hi- archical oscillations and waves. Here two aspects of the proposed theory are discussed. Th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kulish, Victor V. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2002.
Σειρά:Fundamental Theories of Physics ; 128
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03573nam a22005295i 4500
001 978-0-306-48062-1
003 DE-He213
005 20151204144339.0
007 cr nn 008mamaa
008 100301s2002 ne | s |||| 0|eng d
020 |a 9780306480621  |9 978-0-306-48062-1 
024 7 |a 10.1007/0-306-48062-X  |2 doi 
040 |d GrThAP 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
100 1 |a Kulish, Victor V.  |e author. 
245 1 0 |a Hierarchical Methods  |h [electronic resource] :  |b Undulative Electrodynamical Systems, Volume 2 /  |c by Victor V. Kulish. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2002. 
300 |a XVIII, 382 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fundamental Theories of Physics ;  |v 128 
505 0 |a Hierarchical Theory of Undulative Induction Accelerators (Eh-Accelerators) -- Free Electron Lasers as a Classical Electron Device with Long-Time Interaction -- Hierarchical Single-Particle Theory of Free Electron Lasers -- Hierarchical Self-Consistent Theory of Free Electron Lasers -- Hierarchical Theory of Two-Stream Superheterodyne Free Electron Lasers. 
520 |a The book consists of two Volumes. The first (the preceding volume) is devoted to the general nonlinear theory of the hierarchical dynamic oscillative–wave systems. This theory has been called the theory of hi- archical oscillations and waves. Here two aspects of the proposed theory are discussed. The first aspects concern the fundamental nature and the basic c- cepts and ideas of a new hierarchical approach to studying hierarchical dynamic systems. A new hierarchical paradigm is proposed as a - sis of a new point of view of such types of systems. In turn, a set of hierarchical principles is formulated as the fundamental basis of this paradigm. Therein the self-resemblance (holographic) principle plays a key role here. An adequate mathematic description (factorization) of the proposed paradigm is carried out. The concepts of structural and dynamic (functional) operators are put into the basis of this descr- tion. Electrodynamics is chosen as a convenient basis for an obvious demonstration of some key points of the proposed new theory. The second aspect has a purely mathematical nature. It is related to the form of factorization (i.e., mathematical description) of hier- chical types of dynamic models, and discussion of the methods of their mathematical analysis. A set of the hierarchical asymptotic analytical– numerical methods is given as an evidence of the practical effectiveness of the proposed version of hierarchical theory. 
650 0 |a Physics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Electrical engineering. 
650 0 |a Microwaves. 
650 0 |a Optical engineering. 
650 1 4 |a Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Electrical Engineering. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Microwaves, RF and Optical Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402009686 
830 0 |a Fundamental Theories of Physics ;  |v 128 
856 4 0 |u http://dx.doi.org/10.1007/0-306-48062-X  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
912 |a ZDB-2-BAE 
950 |a Physics and Astronomy (Springer-11651)