Analytical Dynamics Theory and Applications /

In his great work, Mecanique Analytique (1788)-^Lagrange used the term "analytical" to mean "non-geometrical." Indeed, Lagrange made the following boast: "No diagrams will be found in this work. The methods that I explain in it require neither constructions nor geometrical o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ardema, Mark D. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2005.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03107nam a22004455i 4500
001 978-0-306-48682-1
003 DE-He213
005 20151204180915.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780306486821  |9 978-0-306-48682-1 
024 7 |a 10.1007/b116020  |2 doi 
040 |d GrThAP 
050 4 |a TA1-2040 
072 7 |a TBC  |2 bicssc 
072 7 |a TEC000000  |2 bisacsh 
082 0 4 |a 620  |2 23 
100 1 |a Ardema, Mark D.  |e author. 
245 1 0 |a Analytical Dynamics  |h [electronic resource] :  |b Theory and Applications /  |c by Mark D. Ardema. 
264 1 |a Boston, MA :  |b Springer US,  |c 2005. 
300 |a XVI, 340 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Review of Newtonian Dynamics -- Motion and Constraints -- Virtual Displacement and Virtual Work -- Variational Principles -- Generalized Coordinates -- Lagrange’s Equations -- Formulation of Equations -- Integration of Equations -- Examples -- Central Force Motion -- Gyroscopic Motion -- Stability Of Motion -- Impulsive Motion -- Gibbs-Appell Equations -- Hamilton’s Equations -- Contact Transformations -- Hamilton-Jacobi Equation -- Approximation Methods. 
520 |a In his great work, Mecanique Analytique (1788)-^Lagrange used the term "analytical" to mean "non-geometrical." Indeed, Lagrange made the following boast: "No diagrams will be found in this work. The methods that I explain in it require neither constructions nor geometrical or mechanical arguments, but only the algebraic operations inherent to a regular and uniform process. Those who love Analysis will, with joy, see mechanics become a new branch of it and will be grateful to me for thus having extended its field." This was in marked contrast to Newton's Philosohiae Naturalis Principia Mathematica (1687) which is full of elaborate geometrical constructions. It has been remarked that the classical Greeks would have understood some of the Principia but none of the Mecanique Analytique. The term analytical dynamics has now come to mean the develop­ ments in dynamics from just after Newton to just before the advent of relativity theory and quantum mechanics, and it is this meaning of the term that is meant here. Frequent use will be made of diagrams to illus­ trate the theory and its applications, although it will be noted that as the book progresses and the material gets "more analytical", the number of figures per chapter tends to decrease, although not monotonically. 
650 0 |a Engineering. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 1 4 |a Engineering. 
650 2 4 |a Engineering, general. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780306486814 
856 4 0 |u http://dx.doi.org/10.1007/b116020  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)