Evolutionary Optimization: the µGP toolkit

This book describes an award-winning evolutionary algorithm that outperformed experts and conventional heuristics in solving several industrial problems. It presents a discussion of the theoretical and practical aspects that enabled μGP (MicroGP) to autonomously find the optimal solution of hard pro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Sanchez, Ernesto (Συγγραφέας), Schillaci, Massimiliano (Συγγραφέας), Squillero, Giovanni (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03259nam a22005055i 4500
001 978-0-387-09426-7
003 DE-He213
005 20151204185156.0
007 cr nn 008mamaa
008 110331s2011 xxu| s |||| 0|eng d
020 |a 9780387094267  |9 978-0-387-09426-7 
024 7 |a 10.1007/978-0-387-09426-7  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Sanchez, Ernesto.  |e author. 
245 1 0 |a Evolutionary Optimization: the µGP toolkit  |h [electronic resource] /  |c by Ernesto Sanchez, Massimiliano Schillaci, Giovanni Squillero. 
264 1 |a Boston, MA :  |b Springer US,  |c 2011. 
300 |a XIII, 178 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Evolutionary computation -- Why yet another one evolutionary optimizer? -- The μGP architecture -- Advanced features -- Performing an evolutionary run -- Command line syntax -- Syntax of the settings file -- Syntax of the population parameters file -- Syntax of the external constraints file -- Writing a compliant evaluator -- Implementation details -- Examples and applications -- Argument and option synopsis -- External constraints synopsis -- Index -- References. 
520 |a This book describes an award-winning evolutionary algorithm that outperformed experts and conventional heuristics in solving several industrial problems. It presents a discussion of the theoretical and practical aspects that enabled μGP (MicroGP) to autonomously find the optimal solution of hard problems, handling highly structured data, such as full-fledged assembly programs, with functions and interrupt handlers. For a practitioner, μGP is simply a versatile optimizer to tackle most problems with limited setup effort. The book is valuable for all who require heuristic problem-solving methodologies, such as engineers dealing with verification and test of electronic circuits; or researchers working in robotics and mobile communication. Examples are provided to guide the reader through the process, from problem definition to gathering results. For an evolutionary computation researcher, μGP may be regarded as a platform where new operators and strategies can be easily tested. MicroGP (the toolkit) is an active project hosted by Sourceforge: http://ugp3.sourceforge.net/. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Application software. 
650 0 |a Computer-aided engineering. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computer Applications. 
650 2 4 |a Computer-Aided Engineering (CAD, CAE) and Design. 
700 1 |a Schillaci, Massimiliano.  |e author. 
700 1 |a Squillero, Giovanni.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387094250 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-09426-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)