Reactive Search and Intelligent Optimization

Reactive Search integrates sub-symbolic machine learning techniques into search heuristics for solving complex optimization problems. By automatically adjusting the working parameters, a reactive search self-tunes and adapts, effectively learning by doing until a solution is found. Intelligent Optim...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Battiti, Roberto (Συγγραφέας), Brunato, Mauro (Συγγραφέας), Mascia, Franco (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2009.
Σειρά:Operations Research/Computer Science Interfaces Series, 45
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04390nam a22006495i 4500
001 978-0-387-09624-7
003 DE-He213
005 20151204190956.0
007 cr nn 008mamaa
008 110401s2009 xxu| s |||| 0|eng d
020 |a 9780387096247  |9 978-0-387-09624-7 
024 7 |a 10.1007/978-0-387-09624-7  |2 doi 
040 |d GrThAP 
050 4 |a QA402-402.37 
050 4 |a T57.6-57.97 
072 7 |a KJT  |2 bicssc 
072 7 |a KJM  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a BUS042000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Battiti, Roberto.  |e author. 
245 1 0 |a Reactive Search and Intelligent Optimization  |h [electronic resource] /  |c by Roberto Battiti, Mauro Brunato, Franco Mascia. 
264 1 |a Boston, MA :  |b Springer US,  |c 2009. 
300 |a X, 196 p. 74 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operations Research/Computer Science Interfaces Series,  |x 1387-666X ;  |v 45 
505 0 |a Introduction: Machine Learning for Intelligent Optimization -- Reacting on the neighborhood -- Reacting on the Annealing Schedule -- Reactive Prohibitions -- Reacting on the Objective Function -- Reacting on the Objective Function -- Supervised Learning -- Reinforcement Learning -- Algorithm Portfolios and Restart Strategies -- Racing -- Teams of Interacting Solvers -- Metrics, Landscapes and Features -- Open Problems. 
520 |a Reactive Search integrates sub-symbolic machine learning techniques into search heuristics for solving complex optimization problems. By automatically adjusting the working parameters, a reactive search self-tunes and adapts, effectively learning by doing until a solution is found. Intelligent Optimization, a superset of Reactive Search, concerns online and off-line schemes based on the use of memory, adaptation, incremental development of models, experimental algorithms applied to optimization, intelligent tuning and design of heuristics. Reactive Search and Intelligent Optimization is an excellent introduction to the main principles of reactive search, as well as an attempt to develop some fresh intuition for the approaches. The book looks at different optimization possibilities with an emphasis on opportunities for learning and self-tuning strategies. While focusing more on methods than on problems, problems are introduced wherever they help make the discussion more concrete, or when a specific problem has been widely studied by reactive search and intelligent optimization heuristics. Individual chapters cover reacting on the neighborhood; reacting on the annealing schedule; reactive prohibitions; model-based search; reacting on the objective function; relationships between reactive search and reinforcement learning; and much more. Each chapter is structured to show basic issues and algorithms; the parameters critical for the success of the different methods discussed; and opportunities and schemes for the automated tuning of these parameters. Anyone working in decision making in business, engineering, economics or science will find a wealth of information here. . 
650 0 |a Mathematics. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Management science. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Computing Methodologies. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Industrial and Production Engineering. 
700 1 |a Brunato, Mauro.  |e author. 
700 1 |a Mascia, Franco.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387096230 
830 0 |a Operations Research/Computer Science Interfaces Series,  |x 1387-666X ;  |v 45 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-09624-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)