Reactive Search and Intelligent Optimization
Reactive Search integrates sub-symbolic machine learning techniques into search heuristics for solving complex optimization problems. By automatically adjusting the working parameters, a reactive search self-tunes and adapts, effectively learning by doing until a solution is found. Intelligent Optim...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Boston, MA :
Springer US,
2009.
|
Σειρά: | Operations Research/Computer Science Interfaces Series,
45 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction: Machine Learning for Intelligent Optimization
- Reacting on the neighborhood
- Reacting on the Annealing Schedule
- Reactive Prohibitions
- Reacting on the Objective Function
- Reacting on the Objective Function
- Supervised Learning
- Reinforcement Learning
- Algorithm Portfolios and Restart Strategies
- Racing
- Teams of Interacting Solvers
- Metrics, Landscapes and Features
- Open Problems.