Reactive Search and Intelligent Optimization

Reactive Search integrates sub-symbolic machine learning techniques into search heuristics for solving complex optimization problems. By automatically adjusting the working parameters, a reactive search self-tunes and adapts, effectively learning by doing until a solution is found. Intelligent Optim...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Battiti, Roberto (Συγγραφέας), Brunato, Mauro (Συγγραφέας), Mascia, Franco (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2009.
Σειρά:Operations Research/Computer Science Interfaces Series, 45
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction: Machine Learning for Intelligent Optimization
  • Reacting on the neighborhood
  • Reacting on the Annealing Schedule
  • Reactive Prohibitions
  • Reacting on the Objective Function
  • Reacting on the Objective Function
  • Supervised Learning
  • Reinforcement Learning
  • Algorithm Portfolios and Restart Strategies
  • Racing
  • Teams of Interacting Solvers
  • Metrics, Landscapes and Features
  • Open Problems.