Theoretical Numerical Analysis A Functional Analysis Framework /

Overall, the book is clearly written, quite pleasant to read, and contains a lot of important material; and the authors have done an excellent job at balancing theoretical developments, interesting examples and exercises, numerical experiments, and bibliographical references. - R. Glowinski, SIAM Re...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Atkinson, Kendall (Συγγραφέας), Han, Weimin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2001.
Σειρά:Texts in Applied Mathematics, 39
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1 Linear Spaces
  • 1.1 Linear spaces
  • 1.2 Normed spaces
  • 1.3 Inner product spaces
  • 1.4 Spaces of continuously differentiable functions
  • 1.5 Lp spaces
  • 1.6 Compact sets
  • 2 Linear Operators on Normed Spaces
  • 2.1 Operators
  • 2.2 Continuous linear operators
  • 2.3 The geometric series theorem and its variants
  • 2.4 Some more results on linear operators
  • 2.5 Linear functional
  • 2.6 Adjoint operators
  • 2.7 Types of convergence
  • 2.8 Compact linear operators
  • 2.9 The resolvent operator
  • 3 Approximation Theory
  • 3.1 Interpolation theory
  • 3.2 Best approximation
  • 3.3 Best approximations in inner product spaces
  • 3.4 Orthogonal polynomials
  • 3.5 Projection operators
  • 3.6 Uniform error bounds
  • 4 Nonlinear Equations and Their Solution by Iteration
  • 4.1 The Banach fixed-point theorem
  • 4.2 Applications to iterative methods
  • 4.3 Differential calculus for nonlinear operators
  • 4.4 Newton’s method
  • 4.5 Completely continuous vector fields
  • 4.6 Conjugate gradient iteration
  • 5 Finite Difference Method
  • 5.1 Finite difference approximations
  • 5.2 Lax equivalence theorem
  • 5.3 More on convergence
  • 6 Sobolev Spaces
  • 6.1 Weak derivatives
  • 6.2 Sobolev spaces
  • 6.3 Properties
  • 6.4 Characterization of Sobolev spaces via the Fourier transform
  • 6.5 Periodic Sobolev spaces
  • 6.6 Integration by parts formulas
  • 7 Variational Formulations of Elliptic Boundary Value Problems
  • 7.1 A model boundary value problem
  • 7.2 Some general results on existence and uniqueness
  • 7.3 The Lax-Milgram lemma
  • 7.4 Weak formulations of linear elliptic boundary value problems
  • 7.5 A boundary value problem of linearized elasticity
  • 7.6 Mixed and dual formulations
  • 7.7 Generalized Lax-Milgram lemma
  • 7.8 A nonlinear problem
  • 8 The Galerkin Method and Its Variants
  • 8.1 The Galerkin method
  • 8.2 The Petrov-Galerkin method
  • 8.3 Generalized Galerkin method
  • 9 Finite Element Analysis
  • 9.1 One-dimensional examples
  • 9.2 Basics of the finite element method
  • 9.3 Error estimates of finite element interpolations
  • 9.4 Convergence and error estimates
  • 10 Elliptic Variational Inequalities and Their Numerical Approximations
  • 10.1 Introductory examples
  • 10.2 Elliptic variational inequalities of the first kind
  • 10.3 Approximation of EVIs of the first kind
  • 10.4 Elliptic variational inequalities of the second kind
  • 10.5 Approximation of EVIs of the second kind
  • 11 Numerical Solution of Fredholm Integral Equations of the Second Kind
  • 11.1 Projection methods: General theory
  • 11.2 Examples
  • 11.3 Iterated projection methods
  • 11.4 The Nyström method
  • 11.5 Product integration
  • 11.6 Projection methods for nonlinear equations
  • 12 Boundary Integral Equations
  • 12.1 Boundary integral equations
  • 12.2 Boundary integral equations of the second kind
  • 12.3 A boundary integral equation of the first kind
  • References.