Elements of Computational Statistics

This book describes techniques used in computational statistics and considers some of the areas of applications, such as density estimation and model building, in which computationally intensive methods are useful. In computational statistics, computation is viewed as an instrument of discovery; the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gentle, James E. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2002.
Σειρά:Statistics and Computing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02666nam a22004335i 4500
001 978-0-387-21611-9
003 DE-He213
005 20151204151434.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 |a 9780387216119  |9 978-0-387-21611-9 
024 7 |a 10.1007/b97337  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Gentle, James E.  |e author. 
245 1 0 |a Elements of Computational Statistics  |h [electronic resource] /  |c by James E. Gentle. 
264 1 |a New York, NY :  |b Springer New York,  |c 2002. 
300 |a XVIII, 420 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics and Computing,  |x 1431-8784 
505 0 |a Methods of Computational Statistics -- Preliminaries -- Monte Carlo Methods for Inference -- Randomization and Data Partitioning -- Bootstrap Methods -- Tools for Identification of Structure in Data -- Estimation of Functions -- Graphical Methods in Computational Statistics -- Data Density and Structure -- Estimation of Probability Density Functions Using Parametric Models -- Nonparametric Estimation of Probability Density Functions -- Structure in Data -- Statistical Models of Dependencies. 
520 |a This book describes techniques used in computational statistics and considers some of the areas of applications, such as density estimation and model building, in which computationally intensive methods are useful. In computational statistics, computation is viewed as an instrument of discovery; the role of the computer is not just to store data, perform computations, and produce graphs and tables, but additionally to suggest to the scientist alternative models and theories. Another characteristic of computational statistics is the computational intensity of the methods; even for datasets of medium size, high performance computers are required to perform the computations. Graphical displays and visualization methods are usually integral features of computational statistics. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387954899 
830 0 |a Statistics and Computing,  |x 1431-8784 
856 4 0 |u http://dx.doi.org/10.1007/b97337  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)