Workshop Calculus with Graphing Calculators Guided Exploration with Review Volume 1 /

TO THE INSTRUCTOR I hear, I forget. I see, I remember. I do, I understand. Anonymous OBJECTIVES OF WORKSHOP CALCULUS 1. Impel students to be active learners. 2. Help students to develop confidence about their ability to think about and do mathematics. 3. Encourage students to read, write, and discus...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hastings, Nancy Baxter (Συγγραφέας), Reynolds, Barbara E. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1999.
Σειρά:Textbooks in Mathematical Sciences,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05198nam a22004815i 4500
001 978-0-387-21624-9
003 DE-He213
005 20151204165235.0
007 cr nn 008mamaa
008 100301s1999 xxu| s |||| 0|eng d
020 |a 9780387216249  |9 978-0-387-21624-9 
024 7 |a 10.1007/b97356  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Hastings, Nancy Baxter.  |e author. 
245 1 0 |a Workshop Calculus with Graphing Calculators  |h [electronic resource] :  |b Guided Exploration with Review Volume 1 /  |c by Nancy Baxter Hastings, Barbara E. Reynolds. 
246 3 |a Volume 1 
264 1 |a New York, NY :  |b Springer New York,  |c 1999. 
300 |a XXVI, 422 p. 70 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Textbooks in Mathematical Sciences,  |x 1431-9381 
505 0 |a Functions -- Relating Position and Time -- Describing a Process for Finding the Position at a Given Time -- Using the Concept of Function to Buy Pizza -- Creating Linear Functions -- Examining Piecewise-Linear Functions -- Developing an Intuitive Understanding of a Tangent Line to a Curve -- Investigating the Behavior of the Tangent Line near a Turning Point -- Contemplating Concavity -- Interpreting Sign Charts -- Function Construction -- Becoming Familiar with Your Calculator -- Implementing Functions Using Expressions -- Representing Functions by Graphs -- Constructing Discrete Functions -- Evaluating Combinations of Functions -- Combining Functions -- Composing Functions -- Sketching Reflections -- Representing Reflections by Expression -- Investigating Inverse Functions -- Function Classes -- Examining Polynomial Functions -- Analyzing Rational Functions -- Using Your Calculator to Investigate the Behavior of Polynomial and Rational Functions -- Measuring Angles -- Graphing Basic Trigonometric Functions -- Stretching and Shrinking the Sine Function -- Shifting the Sine Function -- Modeling Situations Using Exponential Functions -- Comparing Exponential Functions -- Investigating the Relationship Between Exponential and Logarithmic Functions -- Evaluating and Graphing Log Functions -- Modeling Data -- Limits -- Constructing Sequences of Numbers -- Analyzing the Limiting Behavior of Functions -- Approximating Limits Using a Graphing Calculator -- Examining Situations Where the Limit Does Not Exist -- Inspecting Points of Discontinuity -- Identifying Continuous Functions -- Calculating Limits Using Substitution -- Using Limits to Investigate Functions -- Using Limits to Locate Horizontal Asymptotes -- Derivatives and Integrals: First Pass -- Examining an Example -- Discovering a Definition for the Derivative -- Representing a Derivative by an Expression -- Inspecting the Domain of a Derivative -- Investigating the Relationship Between a Function and Its Derivative -- Gleaning Information About the Graph of a Function from Its Derivative -- Finding Some Areas -- Describing Some Possible Approaches -- Applying a Rectangular Approach -- Considering the General Situation -- Calculating Riemann Sums -- Interpreting Definite Integrals -- Checking the Connection Between Derivatives and Definite Integrals. 
520 |a TO THE INSTRUCTOR I hear, I forget. I see, I remember. I do, I understand. Anonymous OBJECTIVES OF WORKSHOP CALCULUS 1. Impel students to be active learners. 2. Help students to develop confidence about their ability to think about and do mathematics. 3. Encourage students to read, write, and discuss mathematical ideas. 4. Enhance students’ understanding of the fundamental concepts under- ing the calculus. 5. Prepare students to use calculus in other disciplines. 6. Inspire students to continue their study of mathematics. 7. Provide an environment where students enjoy learning and doing ma- ematics. xi xii To the Instructor THE WORKSHOP APPROACH Workshop Calculus with Graphing Calculators: Guided Exploration with Review provides students with a gateway into the study of calculus. The two-volume series integrates a review of basic precalculus ideas with the study of c- cepts traditionally encountered in beginning calculus: functions, limits, - rivatives, integrals, and an introduction to integration techniques and d- ferential equations. It seeks to help students develop the confidence, understanding, and skills necessary for using calculus in the natural and - cial sciences, and for continuing their study of mathematics. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
700 1 |a Reynolds, Barbara E.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387986364 
830 0 |a Textbooks in Mathematical Sciences,  |x 1431-9381 
856 4 0 |u http://dx.doi.org/10.1007/b97356  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)