Symmetry and Integration Methods for Differential Equations

This book is a significant update of the first four chapters of Symmetries and Differential Equations (1989; reprinted with corrections, 1996), by George W. Bluman and Sukeyuki Kumei. Since 1989 there have been considerable developments in symmetry methods (group methods) for differential equations...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bluman, George W. (Συγγραφέας), Anco, Stephen C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2002.
Σειρά:Applied Mathematical Sciences, 154
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03586nam a22005295i 4500
001 978-0-387-21649-2
003 DE-He213
005 20151204185856.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 |a 9780387216492  |9 978-0-387-21649-2 
024 7 |a 10.1007/b97380  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Bluman, George W.  |e author. 
245 1 0 |a Symmetry and Integration Methods for Differential Equations  |h [electronic resource] /  |c by George W. Bluman, Stephen C. Anco. 
264 1 |a New York, NY :  |b Springer New York,  |c 2002. 
300 |a X, 422 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 154 
505 0 |a Dimensional Analysis, Modeling, and Invariance -- Lie Groups of Transformations and Infinitesimal Transformations -- Ordinary Differential Equations (ODEs) -- Partial Differential Equations (PDEs). 
520 |a This book is a significant update of the first four chapters of Symmetries and Differential Equations (1989; reprinted with corrections, 1996), by George W. Bluman and Sukeyuki Kumei. Since 1989 there have been considerable developments in symmetry methods (group methods) for differential equations as evidenced by the number of research papers, books, and new symbolic manipulation software devoted to the subject. This is, no doubt, due to the inherent applicability of the methods to nonlinear differential equations. Symmetry methods for differential equations, originally developed by Sophus Lie in the latter half of the nineteenth century, are highly algorithmic and hence amenable to symbolic computation. These methods systematically unify and extend well-known ad hoc techniques to construct explicit solutions for differential equations, especially for nonlinear differential equations. Often ingenious tricks for solving particular differential equations arise transparently from the symmetry point of view, and thus it remains somewhat surprising that symmetry methods are not more widely known. Nowadays it is essential to learn the methods presented in this book to understand existing symbolic manipulation software for obtaining analytical results for differential equations. For ordinary differential equations (ODEs), these include reduction of order through group invariance or integrating factors. For partial differential equations (PDEs), these include the construction of special solutions such as similarity solutions or nonclassical solutions, finding conservation laws, equivalence mappings, and linearizations. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Analysis. 
700 1 |a Anco, Stephen C.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387986548 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 154 
856 4 0 |u http://dx.doi.org/10.1007/b97380  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)