The Analysis of Gene Expression Data Methods and Software /

Thedevelopmentoftechnologiesforhigh–throughputmeasurementofgene expression in biological system is providing powerful new tools for inv- tigating the transcriptome on a genomic scale, and across diverse biol- ical systems and experimental designs. This technological transformation is generating an i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Parmigiani, Giovanni (Επιμελητής έκδοσης), Garrett, Elizabeth S. (Επιμελητής έκδοσης), Irizarry, Rafael A. (Επιμελητής έκδοσης), Zeger, Scott L. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2003.
Σειρά:Statistics for Biology and Health,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05120nam a22006015i 4500
001 978-0-387-21679-9
003 DE-He213
005 20151204170426.0
007 cr nn 008mamaa
008 100301s2003 xxu| s |||| 0|eng d
020 |a 9780387216799  |9 978-0-387-21679-9 
024 7 |a 10.1007/b97411  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MBNS  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
245 1 4 |a The Analysis of Gene Expression Data  |h [electronic resource] :  |b Methods and Software /  |c edited by Giovanni Parmigiani, Elizabeth S. Garrett, Rafael A. Irizarry, Scott L. Zeger. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2003. 
300 |a XIX, 456 p. 95 illus., 46 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Biology and Health,  |x 1431-8776 
505 0 |a The Analysis of Gene Expression Data: An Overview of Methods and Software -- Visualization and Annotation of Genomic Experiments -- Bioconductor R Packages for Exploratory Analysis and Normalization of cDNA Microarray Data -- An R Package for Analyses of Affymetrix Oligonucleotide Arrays -- DNA-Chip Analyzer (dChip) -- Expression Profiler -- An S-PLUS Library for the Analysis and Visualization of Differential Expression -- Dragon and Dragon View: Methods for the Annotation, Analysis, and Visualization of Large-Scale Gene Expression Data -- Snomad: Biologist-Friendly Web Tools for the Standardization and NOrmalization of Microarray Data -- Microarray Analysis Using the MicroArray Explorer -- Parametric Empirical Bayes Methods for Microarrays -- SAM Thresholding and False Discovery Rates for Detecting Differential Gene Expression in DNA Microarrays -- Adaptive Gene Picking with Microarray Data: Detecting Important Low Abundance Signals -- MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments -- GeneClust -- POE: Statistical Methods for Qualitative Analysis of Gene Expression -- Bayesian Decomposition -- Bayesian Clustering of Gene Expression Dynamics -- Relevance Networks: A First Step Toward Finding Genetic Regulatory Networks Within Microarray Data. 
520 |a Thedevelopmentoftechnologiesforhigh–throughputmeasurementofgene expression in biological system is providing powerful new tools for inv- tigating the transcriptome on a genomic scale, and across diverse biol- ical systems and experimental designs. This technological transformation is generating an increasing demand for data analysis in biological inv- tigations of gene expression. This book focuses on data analysis of gene expression microarrays. The goal is to provide guidance to practitioners in deciding which statistical approaches and packages may be indicated for their projects, in choosing among the various options provided by those packages, and in correctly interpreting the results. The book is a collection of chapters written by authors of statistical so- ware for microarray data analysis. Each chapter describes the conceptual and methodological underpinning of data analysis tools as well as their software implementation, and will enable readers to both understand and implement an analysis approach. Methods touch on all aspects of statis- cal analysis of microarrays, from annotation and ?ltering to clustering and classi?cation. All software packages described are free to academic users. The materials presented cover a range of software tools designed for varied audiences. Some chapters describe simple menu-driven software in a user-friendly fashion and are designed to be accessible to microarray data analystswithoutformalquantitativetraining.Mostchaptersaredirectedat microarray data analysts with master’s-level training in computer science, biostatistics, or bioinformatics. A minority of more advanced chapters are intended for doctoral students and researchers. 
650 0 |a Statistics. 
650 0 |a Human genetics. 
650 0 |a Mathematical statistics. 
650 0 |a Biochemistry. 
650 0 |a Bioinformatics. 
650 0 |a Probabilities. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Biochemistry, general. 
650 2 4 |a Human Genetics. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Probability and Statistics in Computer Science. 
700 1 |a Parmigiani, Giovanni.  |e editor. 
700 1 |a Garrett, Elizabeth S.  |e editor. 
700 1 |a Irizarry, Rafael A.  |e editor. 
700 1 |a Zeger, Scott L.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387955773 
830 0 |a Statistics for Biology and Health,  |x 1431-8776 
856 4 0 |u http://dx.doi.org/10.1007/b97411  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)