The Analysis of Gene Expression Data Methods and Software /

Thedevelopmentoftechnologiesforhigh–throughputmeasurementofgene expression in biological system is providing powerful new tools for inv- tigating the transcriptome on a genomic scale, and across diverse biol- ical systems and experimental designs. This technological transformation is generating an i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Parmigiani, Giovanni (Επιμελητής έκδοσης), Garrett, Elizabeth S. (Επιμελητής έκδοσης), Irizarry, Rafael A. (Επιμελητής έκδοσης), Zeger, Scott L. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2003.
Σειρά:Statistics for Biology and Health,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • The Analysis of Gene Expression Data: An Overview of Methods and Software
  • Visualization and Annotation of Genomic Experiments
  • Bioconductor R Packages for Exploratory Analysis and Normalization of cDNA Microarray Data
  • An R Package for Analyses of Affymetrix Oligonucleotide Arrays
  • DNA-Chip Analyzer (dChip)
  • Expression Profiler
  • An S-PLUS Library for the Analysis and Visualization of Differential Expression
  • Dragon and Dragon View: Methods for the Annotation, Analysis, and Visualization of Large-Scale Gene Expression Data
  • Snomad: Biologist-Friendly Web Tools for the Standardization and NOrmalization of Microarray Data
  • Microarray Analysis Using the MicroArray Explorer
  • Parametric Empirical Bayes Methods for Microarrays
  • SAM Thresholding and False Discovery Rates for Detecting Differential Gene Expression in DNA Microarrays
  • Adaptive Gene Picking with Microarray Data: Detecting Important Low Abundance Signals
  • MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments
  • GeneClust
  • POE: Statistical Methods for Qualitative Analysis of Gene Expression
  • Bayesian Decomposition
  • Bayesian Clustering of Gene Expression Dynamics
  • Relevance Networks: A First Step Toward Finding Genetic Regulatory Networks Within Microarray Data.