An Introduction to Partial Differential Equations

Partial differential equations (PDEs) are fundamental to the modeling of natural phenomena, arising in every field of science. Consequently, the desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians; it has inspired such diverse fiel...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Renardy, Michael (Συγγραφέας), Rogers, Robert C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2004.
Έκδοση:Second Edition.
Σειρά:Texts in Applied Mathematics, 13
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03332nam a22005415i 4500
001 978-0-387-21687-4
003 DE-He213
005 20151204171656.0
007 cr nn 008mamaa
008 100301s2004 xxu| s |||| 0|eng d
020 |a 9780387216874  |9 978-0-387-21687-4 
024 7 |a 10.1007/b97427  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Renardy, Michael.  |e author. 
245 1 3 |a An Introduction to Partial Differential Equations  |h [electronic resource] /  |c by Michael Renardy, Robert C. Rogers. 
250 |a Second Edition. 
264 1 |a New York, NY :  |b Springer New York,  |c 2004. 
300 |a XIV, 434 p. 21 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts in Applied Mathematics,  |x 0939-2475 ;  |v 13 
505 0 |a Characteristics -- Conservation Laws and Shocks -- Maximum Principles -- Distributions -- Function Spaces -- Sobolev Spaces -- Operator Theory -- Linear Elliptic Equations -- Nonlinear Elliptic Equations -- Energy Methods for Evolution Problems -- Semigroup Methods. 
520 |a  Partial differential equations (PDEs) are fundamental to the modeling of natural phenomena, arising in every field of science. Consequently, the desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians; it has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. Like algebra, topology, and rational mechanics, PDEs are a core area of mathematics. This book aims to provide the background necessary to initiate work on a Ph.D. thesis in PDEs for beginning graduate students. Prerequisites include a truly advanced calculus course and basic complex variables. Lebesgue integration is needed only in chapter 10, and the necessary tools from functional analysis are developed within the coarse. The book can be used to teach a variety of different courses. This new edition features new problems throughout, and the problems have been rearranged in each section from simplest to most difficult. New examples have also been added. The material on Sobolev spaces has been rearranged and expanded. A new section on nonlinear variational problems with "Young-measure" solutions appears. The reference section has also been expanded. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
700 1 |a Rogers, Robert C.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387004440 
830 0 |a Texts in Applied Mathematics,  |x 0939-2475 ;  |v 13 
856 4 0 |u http://dx.doi.org/10.1007/b97427  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)