A Taste of Jordan Algebras

In this book, Kevin McCrimmon describes the history of Jordan Algebras and he describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. To keep the exposition elementary, the structure theory is developed for linear Jord...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: McCrimmon, Kevin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2004.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04322nam a22004455i 4500
001 978-0-387-21796-3
003 DE-He213
005 20141216142811.0
007 cr nn 008mamaa
008 100301s2004 xxu| s |||| 0|eng d
020 |a 9780387217963  |9 978-0-387-21796-3 
024 7 |a 10.1007/b97489  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a McCrimmon, Kevin.  |e author. 
245 1 2 |a A Taste of Jordan Algebras  |h [electronic resource] /  |c by Kevin McCrimmon. 
264 1 |a New York, NY :  |b Springer New York,  |c 2004. 
300 |a XXV, 563 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a A Colloquial Survey of Jordan Theory -- A Colloquial Survey of Jordan Theory -- A Historical Survey of Jordan Structure Theory -- Jordan Algebras in Physical Antiquity: The Search for an Exceptional Setting for Quantum Mechanics -- Jordan Algebras in the Algebraic Renaissance: Finite-Dimensional Jordan Algebras over Algebraically Closed Fields -- Jordan Algebras in the Enlightenment: Finite-Dimensional Jordan Algebras over General Fields -- The Classical Theory: Jordan Algebras with Minimum Condition -- The Final Classical Formulation: Algebras with Capacity -- The Classical Methods: Cherchez les Division Idempotents -- The Russian Revolution: 1977–1983 -- Zel’manov’s Exceptional Methods -- The Classical Theory -- The Category of Jordan Algebras -- The Category of Alternative Algebras -- Three Special Examples -- Jordan Algebras of Cubic Forms -- Two Basic Principles -- Inverses -- Isotopes -- Peirce Decomposition -- Off-Diagonal Rules -- Peirce Consequences -- Spin Coordinatization -- Hermitian Coordinatization -- Multiple Peirce Decompositions -- Multiple Peirce Consequences -- Hermitian Symmetries -- The Coordinate Algebra -- Jacobson Coordinatization -- Von Neumann Regularity -- Inner Simplicity -- Capacity -- Herstein-Kleinfeld-Osborn Theorem -- Osborn’s Capacity 2 Theorem -- Classical Classification -- Zel’manov’s Exceptional Theorem -- The Radical -- Begetting and Bounding Idempotents -- Bounded Spectra Beget Capacity -- Absorbers of Inner Ideals -- Primitivity -- The Primitive Heart -- Filters and Ultrafilters -- Ultraproducts -- The Final Argument. 
520 |a  In this book, Kevin McCrimmon describes the history of Jordan Algebras and he describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. To keep the exposition elementary, the structure theory is developed for linear Jordan algebras, though the modern quadratic methods are used throughout. Both the quadratic methods and the Zelmanov results go beyond the previous textbooks on Jordan theory, written in the 1960's and 1980's before the theory reached its final form. This book is intended for graduate students and for individuals wishing to learn more about Jordan algebras. No previous knowledge is required beyond the standard first-year graduate algebra course. General students of algebra can profit from exposure to nonassociative algebras, and students or professional mathematicians working in areas such as Lie algebras, differential geometry, functional analysis, or exceptional groups and geometry can also profit from acquaintance with the material. Jordan algebras crop up in many surprising settings and can be applied to a variety of mathematical areas. Kevin McCrimmon introduced the concept of a quadratic Jordan algebra and developed a structure theory of Jordan algebras over an arbitrary ring of scalars. He is a Professor of Mathematics at the University of Virginia and the author of more than 100 research papers. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387954479 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/b97489  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)