Nonlinear Time Series: Nonparametric and Parametric Methods

Amongmanyexcitingdevelopmentsinstatisticsoverthelasttwodecades, nonlineartimeseriesanddata-analyticnonparametricmethodshavegreatly advanced along seemingly unrelated paths. In spite of the fact that the - plication of nonparametric techniques in time series can be traced back to the 1940s at least,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Fan, Jianqing (Επιμελητής έκδοσης), Yao, Qiwei (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2003.
Σειρά:Springer Series in Statistics
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03432nam a22004935i 4500
001 978-0-387-22432-9
003 DE-He213
005 20151204161851.0
007 cr nn 008mamaa
008 100301s2003 xxu| s |||| 0|eng d
020 |a 9780387224329  |9 978-0-387-22432-9 
024 7 |a 10.1007/b97702  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Nonlinear Time Series: Nonparametric and Parametric Methods  |h [electronic resource] /  |c edited by Jianqing Fan, Qiwei Yao. 
264 1 |a New York, NY :  |b Springer New York,  |c 2003. 
300 |a XIX, 553 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics 
505 0 |a Characteristics of Time Series -- ARMA Modeling and Forecasting -- Parametric Nonlinear Time Series Models -- Nonparametric Density Estimation -- Smoothing in Time Series -- Spectral Density Estimation and Its Applications -- Nonparametric Models -- Model Validation -- Nonlinear Prediction. 
520 |a Amongmanyexcitingdevelopmentsinstatisticsoverthelasttwodecades, nonlineartimeseriesanddata-analyticnonparametricmethodshavegreatly advanced along seemingly unrelated paths. In spite of the fact that the - plication of nonparametric techniques in time series can be traced back to the 1940s at least, there still exists healthy and justi?ed skepticism about the capability of nonparametric methods in time series analysis. As - thusiastic explorers of the modern nonparametric toolkit, we feel obliged to assemble together in one place the newly developed relevant techniques. Theaimofthisbookistoadvocatethosemodernnonparametrictechniques that have proven useful for analyzing real time series data, and to provoke further research in both methodology and theory for nonparametric time series analysis. Modern computers and the information age bring us opportunities with challenges. Technological inventions have led to the explosion in data c- lection (e.g., daily grocery sales, stock market trading, microarray data). The Internet makes big data warehouses readily accessible. Although cl- sic parametric models, which postulate global structures for underlying systems, are still very useful, large data sets prompt the search for more re?nedstructures,whichleadstobetterunderstandingandapproximations of the real world. Beyond postulated parametric models, there are in?nite other possibilities. Nonparametric techniques provide useful exploratory tools for this venture, including the suggestion of new parametric models and the validation of existing ones. 
650 0 |a Statistics. 
650 0 |a Economics, Mathematical. 
650 0 |a Econometrics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Econometrics. 
700 1 |a Fan, Jianqing.  |e editor. 
700 1 |a Yao, Qiwei.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387951706 
830 0 |a Springer Series in Statistics 
856 4 0 |u http://dx.doi.org/10.1007/b97702  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)