A Distribution-Free Theory of Nonparametric Regression

The regression estimation problem has a long history. Already in 1632 Galileo Galilei used a procedure which can be interpreted as ?tting a linear relationship to contaminated observed data. Such ?tting of a line through a cloud of points is the classical linear regression problem. A solution of thi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Györfi, László (Συγγραφέας), Kohler, Michael (Συγγραφέας), Krzyżak, Adam (Συγγραφέας), Walk, Harro (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2002.
Σειρά:Springer Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Why Is Nonparametric Regression Important?
  • How to Construct Nonparametric Regression Estimates?
  • Lower Bounds
  • Partitioning Estimates
  • Kernel Estimates
  • k-NN Estimates
  • Splitting the Sample
  • Cross-Validation
  • Uniform Laws of Large Numbers
  • Least Squares Estimates I: Consistency
  • Least Squares Estimates II: Rate of Convergence
  • Least Squares Estimates III: Complexity Regularization
  • Consistency of Data-Dependent Partitioning Estimates
  • Univariate Least Squares Spline Estimates
  • Multivariate Least Squares Spline Estimates
  • Neural Networks Estimates
  • Radial Basis Function Networks
  • Orthogonal Series Estimates
  • Advanced Techniques from Empirical Process Theory
  • Penalized Least Squares Estimates I: Consistency
  • Penalized Least Squares Estimates II: Rate of Convergence
  • Dimension Reduction Techniques
  • Strong Consistency of Local Averaging Estimates
  • Semirecursive Estimates
  • Recursive Estimates
  • Censored Observations
  • Dependent Observations.