A Distribution-Free Theory of Nonparametric Regression
The regression estimation problem has a long history. Already in 1632 Galileo Galilei used a procedure which can be interpreted as ?tting a linear relationship to contaminated observed data. Such ?tting of a line through a cloud of points is the classical linear regression problem. A solution of thi...
Κύριοι συγγραφείς: | , , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York,
2002.
|
Σειρά: | Springer Series in Statistics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Why Is Nonparametric Regression Important?
- How to Construct Nonparametric Regression Estimates?
- Lower Bounds
- Partitioning Estimates
- Kernel Estimates
- k-NN Estimates
- Splitting the Sample
- Cross-Validation
- Uniform Laws of Large Numbers
- Least Squares Estimates I: Consistency
- Least Squares Estimates II: Rate of Convergence
- Least Squares Estimates III: Complexity Regularization
- Consistency of Data-Dependent Partitioning Estimates
- Univariate Least Squares Spline Estimates
- Multivariate Least Squares Spline Estimates
- Neural Networks Estimates
- Radial Basis Function Networks
- Orthogonal Series Estimates
- Advanced Techniques from Empirical Process Theory
- Penalized Least Squares Estimates I: Consistency
- Penalized Least Squares Estimates II: Rate of Convergence
- Dimension Reduction Techniques
- Strong Consistency of Local Averaging Estimates
- Semirecursive Estimates
- Recursive Estimates
- Censored Observations
- Dependent Observations.