Model Selection and Multimodel Inference A Practical Information-Theoretic Approach /

We wrote this book to introduce graduate students and research workers in various scienti?c disciplines to the use of information-theoretic approaches in the analysis of empirical data. These methods allow the data-based selection of a “best” model and a ranking and weighting of the remaining models...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Burnham, Kenneth P. (Επιμελητής έκδοσης), Anderson, David R. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2002.
Έκδοση:2.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03380nam a22004695i 4500
001 978-0-387-22456-5
003 DE-He213
005 20151204180449.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 |a 9780387224565  |9 978-0-387-22456-5 
024 7 |a 10.1007/b97636  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Model Selection and Multimodel Inference  |h [electronic resource] :  |b A Practical Information-Theoretic Approach /  |c edited by Kenneth P. Burnham, David R. Anderson. 
250 |a 2. 
264 1 |a New York, NY :  |b Springer New York,  |c 2002. 
300 |a XXVI, 488 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Information and Likelihood Theory: A Basis for Model Selection and Inference -- Basic Use of the Information-Theoretic Approach -- Formal Inference From More Than One Model: Multimodel Inference (MMI) -- Monte Carlo Insights and Extended Examples -- Advanced Issues and Deeper Insights -- Statistical Theory and Numerical Results -- Summary. 
520 |a We wrote this book to introduce graduate students and research workers in various scienti?c disciplines to the use of information-theoretic approaches in the analysis of empirical data. These methods allow the data-based selection of a “best” model and a ranking and weighting of the remaining models in a pre-de?ned set. Traditional statistical inference can then be based on this selected best model. However, we now emphasize that information-theoretic approaches allow formal inference to be based on more than one model (m- timodel inference). Such procedures lead to more robust inferences in many cases, and we advocate these approaches throughout the book. The second edition was prepared with three goals in mind. First, we have tried to improve the presentation of the material. Boxes now highlight ess- tial expressions and points. Some reorganization has been done to improve the ?ow of concepts, and a new chapter has been added. Chapters 2 and 4 have been streamlined in view of the detailed theory provided in Chapter 7. S- ond, concepts related to making formal inferences from more than one model (multimodel inference) have been emphasized throughout the book, but p- ticularly in Chapters 4, 5, and 6. Third, new technical material has been added to Chapters 5 and 6. Well over 100 new references to the technical literature are given. These changes result primarily from our experiences while giving several seminars, workshops, and graduate courses on material in the ?rst e- tion. 
650 0 |a Statistics. 
650 0 |a Ecology. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Ecology. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
700 1 |a Burnham, Kenneth P.  |e editor. 
700 1 |a Anderson, David R.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387953649 
856 4 0 |u http://dx.doi.org/10.1007/b97636  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)