Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations

Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily comput...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Balser, Werner (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2000.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02418nam a22004575i 4500
001 978-0-387-22598-2
003 DE-He213
005 20151125021832.0
007 cr nn 008mamaa
008 100301s2000 xxu| s |||| 0|eng d
020 |a 9780387225982  |9 978-0-387-22598-2 
024 7 |a 10.1007/b97608  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Balser, Werner.  |e author. 
245 1 0 |a Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations  |h [electronic resource] /  |c by Werner Balser. 
264 1 |a New York, NY :  |b Springer New York,  |c 2000. 
300 |a XVIII, 301 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Basic Properties of Solutions -- Singularities of First Kind -- Highest-Level Formal Solutions -- Asymptotic Power Series -- Integral Operators -- Summable Power Series -- Cauchy-Heine Transform -- Solutions of Highest Level -- Stokes’ Phenomenon -- Multisummable Power Series -- Ecalle’s Acceleration Operators -- Other Related Questions -- Applications in Other Areas, and Computer Algebra -- Some Historical Remarks. 
520 |a Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily computed, but which generally involves such power series diverging everywhere. In this book the author presents the classical theory of meromorphic systems of ODE in the new light shed upon it by the recent achievements in the theory of summability of formal power series. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387986906 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/b97608  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)