Pell’s Equation

Pell's equation is an important topic of algebraic number theory that involves quadratic forms and the structure of rings of integers in algebraic number fields. The history of this equation is long and circuitous, and involved a number of different approaches before a definitive theory was fo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Barbeau, Edward J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2003.
Σειρά:Problem Books in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03269nam a22004455i 4500
001 978-0-387-22602-6
003 DE-He213
005 20150207092523.0
007 cr nn 008mamaa
008 121227s2003 xxu| s |||| 0|eng d
020 |a 9780387226026  |9 978-0-387-22602-6 
024 7 |a 10.1007/b97610  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Barbeau, Edward J.  |e author. 
245 1 0 |a Pell’s Equation  |h [electronic resource] /  |c by Edward J. Barbeau. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2003. 
300 |a XII, 212 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Problem Books in Mathematics,  |x 0941-3502 
505 0 |a The Square Root of 2 -- Problems Leading to Pel?s Equation and Preliminary Investigations -- Quadratic Surds -- The Fundamental Solution -- Tracking Down the Fundamental Solution -- Pel?s Equation and Pythagorean Triples -- The Cubic Analogue of Pel?s Equation -- Analogues of the Fourth and Higher Degrees -- A Finite Version of Pel?s Equation. 
520 |a  Pell's equation is an important topic of algebraic number theory that involves quadratic forms and the structure of rings of integers in algebraic number fields. The history of this equation is long and circuitous, and involved a number of different approaches before a definitive theory was found. There were partial patterns and quite effective methods of finding solutions, but a complete theory did not emerge until the end of the eighteenth century. The topic is motivated and developed through sections of exercises which allow the student to recreate known theory and provide a focus for their algebraic practice. There are also several explorations that encourage the reader to embark on their own research. Some of these are numerical and often require the use of a calculator or computer. Others introduce relevant theory that can be followed up on elsewhere, or suggest problems that the reader may wish to pursue. A high school background in mathematics is all that is needed to get into this book, and teachers and others interested in mathematics who do not have a background in advanced mathematics may find that it is a suitable vehicle for keeping up an independent interest in the subject. Edward Barbeau is Professor of Mathematics at the University of Toronto. He has published a number of books directed to students of mathematics and their teachers, including Polynomials (Springer 1989), Power Play (MAA 1997), Fallacies, Flaws and Flimflam (MAA 1999) and After Math (Wall & Emerson, Toronto 1995). 
650 0 |a Mathematics. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441930408 
830 0 |a Problem Books in Mathematics,  |x 0941-3502 
856 4 0 |u http://dx.doi.org/10.1007/b97610  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)