Linear Programming 1: Introduction /

By George B. Dantzig LINEAR PROGRAMMING The Story About How It Began: Some legends, a little about its historical sign- cance, and comments about where its many mathematical programming extensions may be headed. Industrial production, the ?ow of resources in the economy, the exertion of military e?o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dantzig, George B. (Συγγραφέας), Thapa, Mukund N. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1997.
Σειρά:Springer Series in Operations Research and Financial Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03363nam a22005175i 4500
001 978-0-387-22633-0
003 DE-He213
005 20151204180441.0
007 cr nn 008mamaa
008 100301s1997 xxu| s |||| 0|eng d
020 |a 9780387226330  |9 978-0-387-22633-0 
024 7 |a 10.1007/b97672  |2 doi 
040 |d GrThAP 
050 4 |a HD30.23 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
082 0 4 |a 658.40301  |2 23 
100 1 |a Dantzig, George B.  |e author. 
245 1 0 |a Linear Programming  |h [electronic resource] :  |b 1: Introduction /  |c by George B. Dantzig, Mukund N. Thapa. 
264 1 |a New York, NY :  |b Springer New York,  |c 1997. 
300 |a XXXVIII, 435 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Operations Research and Financial Engineering,  |x 1431-8598 
505 0 |a The Linear Programming Problem -- Solving Simple Linear Programs -- The Simplex Method -- Interior-Point Methods -- Duality -- Equivalent Formulations -- Price Mechanism and Sensitivity Analysis -- Transportation and Assignment Problem -- Network Flow Theory. 
520 |a By George B. Dantzig LINEAR PROGRAMMING The Story About How It Began: Some legends, a little about its historical sign- cance, and comments about where its many mathematical programming extensions may be headed. Industrial production, the ?ow of resources in the economy, the exertion of military e?ort in a war, the management of ?nances—all require the coordination of interrelated activities. What these complex undertakings share in common is the task of constructing a statement of actions to be performed, their timing and quantity(calledaprogramorschedule), that, ifimplemented, wouldmovethesystem from a given initial status as much as possible towards some de?ned goal. While di?erences may exist in the goals to be achieved, the particular processes, and the magnitudes of e?ort involved, when modeled in mathematical terms these seemingly disparate systems often have a remarkably similar mathematical str- ture. The computational task is then to devise for these systems an algorithm for choosing the best schedule of actions from among the possible alternatives. The observation, in particular, that a number of economic, industrial, ?nancial, and military systems can be modeled (or reasonably approximated) by mathem- ical systems of linear inequalities and equations has given rise to the development of the linear programming ?eld. 
650 0 |a Business. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 1 4 |a Business and Management. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
700 1 |a Thapa, Mukund N.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387948331 
830 0 |a Springer Series in Operations Research and Financial Engineering,  |x 1431-8598 
856 4 0 |u http://dx.doi.org/10.1007/b97672  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)