Feedforward Neural Network Methodology

The decade prior to publication has seen an explosive growth in com- tational speed and memory and a rapid enrichment in our understa- ing of arti?cial neural networks. These two factors have cooperated to at last provide systems engineers and statisticians with a working, prac- cal, and successful...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Fine, Terrence L. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1999.
Σειρά:Information Science and Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03759nam a22005535i 4500
001 978-0-387-22649-1
003 DE-He213
005 20151204172617.0
007 cr nn 008mamaa
008 100301s1999 xxu| s |||| 0|eng d
020 |a 9780387226491  |9 978-0-387-22649-1 
024 7 |a 10.1007/b97705  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Fine, Terrence L.  |e author. 
245 1 0 |a Feedforward Neural Network Methodology  |h [electronic resource] /  |c by Terrence L. Fine. 
264 1 |a New York, NY :  |b Springer New York,  |c 1999. 
300 |a XVI, 340 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Information Science and Statistics,  |x 1613-9011 
505 0 |a Objectives, Motivation, Background, and Organization -- Perceptions—Networks with a Single Node -- Feedforward Networks I: Generalities and LTU Nodes -- Feedforward Networks II: Real-Valued Nodes -- Algorithms for Designing Feedforward Networks -- Architecture Selection and Penalty Terms -- Generalization and Learning. 
520 |a The decade prior to publication has seen an explosive growth in com- tational speed and memory and a rapid enrichment in our understa- ing of arti?cial neural networks. These two factors have cooperated to at last provide systems engineers and statisticians with a working, prac- cal, and successful ability to routinely make accurate complex, nonlinear models of such ill-understood phenomena as physical, economic, social, and information-based time series and signals and of the patterns h- den in high-dimensional data. The models are based closely on the data itself and require only little prior understanding of the stochastic mec- nisms underlying these phenomena. Among these models, the feedforward neural networks, also called multilayer perceptrons, have lent themselves to the design of the widest range of successful forecasters, pattern clas- ?ers, controllers, and sensors. In a number of problems in optical character recognition and medical diagnostics, such systems provide state-of-the-art performance and such performance is also expected in speech recognition applications. The successful application of feedforward neural networks to time series forecasting has been multiply demonstrated and quite visibly so in the formation of market funds in which investment decisions are based largely on neural network–based forecasts of performance. The purpose of this monograph, accomplished by exposing the meth- ology driving these developments, is to enable you to engage in these - plications and, by being brought to several research frontiers, to advance the methodology itself. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Physics. 
650 0 |a Statistics. 
650 0 |a Complexity, Computational. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Numerical and Computational Physics. 
650 2 4 |a Complexity. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387987453 
830 0 |a Information Science and Statistics,  |x 1613-9011 
856 4 0 |u http://dx.doi.org/10.1007/b97705  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)