An Introduction to Wavelets Through Linear Algebra

Mathematics majors at Michigan State University take a “Capstone” course near the end of their undergraduate careers. The content of this course varies with each offering. Its purpose is to bring together different topics from the undergraduate curriculum and introduce students to a developing area...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Frazier, Michael W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1999.
Σειρά:Undergraduate Texts in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03344nam a22005055i 4500
001 978-0-387-22653-8
003 DE-He213
005 20151204140638.0
007 cr nn 008mamaa
008 100301s1999 xxu| s |||| 0|eng d
020 |a 9780387226538  |9 978-0-387-22653-8 
024 7 |a 10.1007/b97841  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Frazier, Michael W.  |e author. 
245 1 3 |a An Introduction to Wavelets Through Linear Algebra  |h [electronic resource] /  |c by Michael W. Frazier. 
264 1 |a New York, NY :  |b Springer New York,  |c 1999. 
300 |a XVI, 503 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a Prologue: Compression of the FBI Fingerprint Files -- Background: Complex Numbers and Linear Algebra -- The Discrete Fourier Transform -- Wavelets on ZN -- Wavelets on Z -- Wavelets on R -- Wavelets and Differential Equations. 
520 |a Mathematics majors at Michigan State University take a “Capstone” course near the end of their undergraduate careers. The content of this course varies with each offering. Its purpose is to bring together different topics from the undergraduate curriculum and introduce students to a developing area in mathematics. This text was originally written for a Capstone course. Basicwavelettheoryisanaturaltopicforsuchacourse. Byname, wavelets date back only to the 1980s. On the boundary between mathematics and engineering, wavelet theory shows students that mathematics research is still thriving, with important applications in areas such as image compression and the numerical solution of differential equations. The author believes that the essentials of wavelet theory are suf?ciently elementary to be taught successfully to advanced undergraduates. This text is intended for undergraduates, so only a basic background in linear algebra and analysis is assumed. We do not require familiarity with complex numbers and the roots of unity. These are introduced in the ?rst two sections of chapter 1. In the remainder of chapter 1 we review linear algebra. Students should be familiar with the basic de?nitions in sections 1. 3 and 1. 4. From our viewpoint, linear transformations are the primary object of study; v Preface vi a matrix arises as a realization of a linear transformation. Many students may have been exposed to the material on change of basis in section 1. 4, but may bene?t from seeing it again. In section 1. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Algebra. 
650 2 4 |a Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387986395 
830 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u http://dx.doi.org/10.1007/b97841  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)