Bayesian Nonparametrics

Bayesian nonparametrics has grown tremendously in the last three decades, especially in the last few years. This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. While the book is of special interest to Bayesians, it will also appeal to statisticia...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ghosh, J. K. (Συγγραφέας), Ramamoorthi, R. V. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2003.
Σειρά:Springer Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03515nam a22004455i 4500
001 978-0-387-22654-5
003 DE-He213
005 20151204162244.0
007 cr nn 008mamaa
008 100301s2003 xxu| s |||| 0|eng d
020 |a 9780387226545  |9 978-0-387-22654-5 
024 7 |a 10.1007/b97842  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Ghosh, J. K.  |e author. 
245 1 0 |a Bayesian Nonparametrics  |h [electronic resource] /  |c by J. K. Ghosh, R. V. Ramamoorthi. 
264 1 |a New York, NY :  |b Springer New York,  |c 2003. 
300 |a XII, 308 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a Introduction: Why Bayesian Nonparametrics—An Overview and Summary -- Preliminaries and the Finite Dimensional Case -- M(?) and Priors on M(?) -- Dirichlet and Polya tree process -- Consistency Theorems -- Density Estimation -- Inference for Location Parameter -- Regression Problems -- Uniform Distribution on Infinite-Dimensional Spaces -- Survival Analysis—Dirichlet Priors -- Neutral to the Right Priors -- Exercises. 
520 |a Bayesian nonparametrics has grown tremendously in the last three decades, especially in the last few years. This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. While the book is of special interest to Bayesians, it will also appeal to statisticians in general because Bayesian nonparametrics offers a whole continuous spectrum of robust alternatives to purely parametric and purely nonparametric methods of classical statistics. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian nonparametrics. Though the emphasis of the book is on nonparametrics, there is a substantial chapter on asymptotics of classical Bayesian parametric models. Jayanta Ghosh has been Director and Jawaharlal Nehru Professor at the Indian Statistical Institute and President of the International Statistical Institute. He is currently professor of statistics at Purdue University. He has been editor of Sankhya and served on the editorial boards of several journals including the Annals of Statistics. Apart from Bayesian analysis, his interests include asymptotics, stochastic modeling, high dimensional model selection, reliability and survival analysis and bioinformatics. R.V. Ramamoorthi is professor at the Department of Statistics and Probability at Michigan State University. He has published papers in the areas of sufficiency invariance, comparison of experiments, nonparametric survival analysis and Bayesian analysis. In addition to Bayesian nonparametrics, he is currently interested in Bayesian networks and graphical models. He is on the editorial board of Sankhya. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a Ramamoorthi, R. V.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387955377 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u http://dx.doi.org/10.1007/b97842  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)