Plasticity Mathematical Theory and Numerical Analysis /

The theory of elastoplastic media is now a mature branch of solid and structural mechanics, having experienced significant development during the latter half of this century. This monograph focuses on theoretical aspects of the small-strain theory of hardening elastoplasticity. It is intended to pro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Han, Weimin (Συγγραφέας), Reddy, B. Daya (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1999.
Σειρά:Interdisciplinary Applied Mathematics, 9
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03483nam a22004815i 4500
001 978-0-387-22657-6
003 DE-He213
005 20151204152250.0
007 cr nn 008mamaa
008 100301s1999 xxu| s |||| 0|eng d
020 |a 9780387226576  |9 978-0-387-22657-6 
024 7 |a 10.1007/b97851  |2 doi 
040 |d GrThAP 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a SCI041000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a Han, Weimin.  |e author. 
245 1 0 |a Plasticity  |h [electronic resource] :  |b Mathematical Theory and Numerical Analysis /  |c by Weimin Han, B. Daya Reddy. 
264 1 |a New York, NY :  |b Springer New York,  |c 1999. 
300 |a XIII, 373 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 9 
505 0 |a Continuum Mechanics and Elastoplasticity Theory -- Preliminaries -- Continuum Mechanics and Linear Elasticity -- Elastoplastic Media -- The Plastic Flow Law in a Convex-Analytic Setting -- The Variational Problems of Elastoplasticity -- Results from Functional Analysis and Function Spaces -- Variational Equations and Inequalities -- The Primal Variational Problem of Elastoplasticity -- The Dual Variational Problem of Elastoplasticity -- Numerical Analysis of the Variational Problems -- to Finite Element Analysis -- Approximation of Variational Problems -- Approximations of the Abstract Problem -- Numerical Analysis of the Primal Problem -- Numerical Analysis of the Dual Problem. 
520 |a The theory of elastoplastic media is now a mature branch of solid and structural mechanics, having experienced significant development during the latter half of this century. This monograph focuses on theoretical aspects of the small-strain theory of hardening elastoplasticity. It is intended to provide a reasonably comprehensive and unified treatment of the mathematical theory and numerical analysis, exploiting in particular the great advantages to be gained by placing the theory in a convex analytic context. The book is divided into three parts. The first part provides a detailed introduction to plasticity, in which the mechanics of elastoplastic behavior is emphasized. The second part is taken up with mathematical analysis of the elastoplasticity problem. The third part is devoted to error analysis of various semi-discrete and fully discrete approximations for variational formulations of the elastoplasticity. The work is intended for a wide audience: this would include specialists in plasticity who wish to know more about the mathematical theory, as well as those with a background in the mathematical sciences who seek a self-contained account of the mechanics and mathematics of plasticity theory. 
650 0 |a Engineering. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Engineering. 
650 2 4 |a Theoretical and Applied Mechanics. 
700 1 |a Reddy, B. Daya.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387987040 
830 0 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 9 
856 4 0 |u http://dx.doi.org/10.1007/b97851  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)