Analysis and Simulation of Chaotic Systems

Beginning with realistic mathematical or verbal models of physical or biological phenomena, the author derives tractable mathematical models that are amenable to further mathematical analysis or to elucidating computer simulations. For the most part, derivations are based on perturbation methods. Be...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hoppensteadt, Frank C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2000.
Έκδοση:Second Edition.
Σειρά:Applied Mathematical Sciences, 94
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03239nam a22005175i 4500
001 978-0-387-22698-9
003 DE-He213
005 20151204145105.0
007 cr nn 008mamaa
008 100301s2000 xxu| s |||| 0|eng d
020 |a 9780387226989  |9 978-0-387-22698-9 
024 7 |a 10.1007/b98824  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Hoppensteadt, Frank C.  |e author. 
245 1 0 |a Analysis and Simulation of Chaotic Systems  |h [electronic resource] /  |c by Frank C. Hoppensteadt. 
250 |a Second Edition. 
264 1 |a New York, NY :  |b Springer New York,  |c 2000. 
300 |a XX, 318 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 94 
505 0 |a Linear Systems -- Dynamical Systems -- Stability Methods for Nonlinear Systems -- Bifurcation and Topological Methods -- Regular Perturbation Methods -- Iterations and Perturbations -- Methods of Averaging -- Quasistatic-State Approximations. 
520 |a Beginning with realistic mathematical or verbal models of physical or biological phenomena, the author derives tractable mathematical models that are amenable to further mathematical analysis or to elucidating computer simulations. For the most part, derivations are based on perturbation methods. Because of this, the majority of the text is devoted to careful derivations of implicit function theorems, the method of averaging, and quasi-static state approximation methods. The duality between stability and perturbation is developed and used, relying heavily on the concept of stability under persistent disturbances. This explains why stability results developed for quite simple problems are often useful for more complicated, even chaotic, ones. Relevant topics about linear systems, nonlinear oscillations, and stability methods for difference, differential-delay, integro- differential and ordinary and partial differential equations are developed throughout the book. For the second edition, the author has restructured the chapters, placing special emphasis on introductory materials in Chapters 1 and 2 as distinct from presentation materials in Chapters 3 through 8. In addition, more material on bifurcations from the point of view of canonical models, sections on randomly perturbed systems, and several new computer simulations have been added. 
650 0 |a Mathematics. 
650 0 |a Ecology. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Biomathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Ecology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387989433 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 94 
856 4 0 |u http://dx.doi.org/10.1007/b98824  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)