Ordinal Data Modeling

Ordinal Data Modeling is a comprehensive treatment of ordinal data models from both likelihood and Bayesian perspectives. Written for graduate students and researchers in the statistical and social sciences, this book describes a coherent framework for understanding binary and ordinal regression mod...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Johnson, Valen E. (Συγγραφέας), Albert, James H. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1999.
Σειρά:Statistics for Social Science and Behavorial Sciences
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:Ordinal Data Modeling is a comprehensive treatment of ordinal data models from both likelihood and Bayesian perspectives. Written for graduate students and researchers in the statistical and social sciences, this book describes a coherent framework for understanding binary and ordinal regression models, item response models, graded response models, and ROC analyses, and for exposing the close connection between these models. A unique feature of this text is its emphasis on applications. All models developed in the book are motivated by real datasets, and considerable attention is devoted to the description of diagnostic plots and residual analyses. Software and datasets used for all analyses described in the text are available on websites listed in the preface.
Φυσική περιγραφή:X, 258 p. online resource.
ISBN:9780387227023